DOI QR코드

DOI QR Code

Protective Effects of Sea Buckthorn (Hippophae rhamnoides L.) Leaves Fermented with Hericium erinaceum Mycelium against Oxidative Modification of Biological Macromolecules and Cell Death

노루궁뎅이 버섯균사체를 이용한 비타민나무 발효물이 생체고분자의 산화적 변형과 세포사멸에 미치는 보호 영향

  • Kim, Seung-Sub (Department of Biomedical Science, Cheongju University) ;
  • Kyeong, Inn-Goo (R&D Center, Cosis Bio Corporation Limited) ;
  • Lee, Mi-La (R&D Center, Cosis Bio Corporation Limited) ;
  • Kim, Dong-Goo (R&D Center, Cosis Bio Corporation Limited) ;
  • Shin, Ji-Young (R&D Center, Cosis Bio Corporation Limited) ;
  • Yang, Jin-Yi (Department of Biomedical Science, Cheongju University) ;
  • Lee, Gwang-Ho (Department of Biomedical Science, Cheongju University) ;
  • Eum, Won-Sik (Research Institute of Bioscience and Biotechnology, Hallym University) ;
  • Kang, Jung-Hoon (Department of Biomedical Science, Cheongju University)
  • 김승섭 (청주대학교 바이오메디컬학과) ;
  • 경인구 ((주)코시스바이오 기업부설연구소) ;
  • 이미라 ((주)코시스바이오 기업부설연구소) ;
  • 김동구 ((주)코시스바이오 기업부설연구소) ;
  • 신지영 ((주)코시스바이오 기업부설연구소) ;
  • 양진이 (청주대학교 바이오메디컬학과) ;
  • 이광호 (청주대학교 바이오메디컬학과) ;
  • 음원식 (한림대학교 생명공학연구소) ;
  • 강정훈 (청주대학교 바이오메디컬학과)
  • Received : 2014.09.25
  • Accepted : 2014.11.19
  • Published : 2015.01.31

Abstract

In this study, hot water extract from sea buckthorn (Hippophae rhamnoides L.) leaves fermented with Hericium erinaceum mycelium (SBT-HE) was assessed for protection against oxidative modification of biological macromolecules and cell death. Antioxidant activity of SBT-HE was evaluated based on 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical, and peroxyl radical scavenging assays. SBT-HE showed 65.06% DPPH radical scavenging activity at $500{\mu}g/mL$, 98.83% ABTS radical scavenging activity at $50{\mu}g/mL$, and 44.03% peroxyl radical scavenging activity at $100{\mu}g/mL$. SBT-HE significantly inhibited DNA strand breakage induced by peroxyl radical. SBT-HE also prevented peroxyl radical-mediated human serum albumin modification. SBT-HE effectively inhibited $H_2O_2$-induced cell death and significantly increased cell survival by 21.59% at $100{\mu}g/mL$. SBT-HE also reduced intracellular reactive oxygen species levels in $H_2O_2$-treated cells. The results suggest that SBT-HE can contribute to antioxidant activity and protect cells from oxidative stress-induced cell injury.

본 연구에서는 노루궁뎅이 버섯균사체를 비타민나무 잎에 배양하여 조제한 노루궁뎅이 버섯균사체-비타민나무 발효물 열수 추출물이 생체고분자의 산화적 손상과 세포사멸을 보호할 수 있는지를 관찰하였다. 노루궁뎅이 버섯균사체-비타민나무 발효물의 항산화 활성을 DPPH radical, ABTS radical, peroxyl radical 소거활성 측정을 통해 알아보았다. 그 결과 노루궁뎅이 버섯균사체-비타민나무 발효물을 처리한 DPPH radical 소거활성은 $500{\mu}g/mL$ 농도에서 65.06%, ABTS radical 소거활성은 $50{\mu}g/mL$ 농도에서 98.83%, peroxyl radical 소거활성은 $100{\mu}g/mL$ 농도에서 44.03%로 높은 항산화 활성을 나타내었다. 노루궁뎅이 버섯균사체-비타민나무 발효물은 DNA의 산화적 손상을 효과적으로 억제하였다. 노루궁뎅이 버섯균사체-비타민나무 발효물 역시 사람의 혈청단백질과 Cu,Zn-SOD의 산화적 손상을 억제하였다. 세포에 $H_2O_2$를 처리하였을 때 세포생존율에 비하여 발효물을 $100{\mu}g/mL$ 농도로 전 처리한 세포생존율은 21.59% 높게 증가되었다. 또한 발효물을 $50{\mu}g/mL$ 농도로 처리했을 경우 세포 내 ROS의 축적이 유의적으로 감소되었다. 따라서 노루궁뎅이 버섯균사체-비타민나무 발효물은 항산화 활성뿐만 아니라 산화적 스트레스에 의해 야기되는 세포 독성에 대한 보호 작용이 뛰어난 것으로 사료된다.

Keywords

References

  1. Heinaaho M, Pusenius J, Julkunen-Tiitto R. 2006. Effects of different organic farming methods on the concentration of phenolic compounds in sea buckthorn leaves. J Agric Food Chem 56: 7678-7685.
  2. Beveridge T, Li TS, Oomah BD, Smith A. 1999. Sea buckthorn products: manufacture and composition. J Agric Food Chem 47: 3480-3488. https://doi.org/10.1021/jf981331m
  3. Eccleston C, Baoru Y, Tahvonen R, Kallio H, Rimbach GH, Minihane AM. 2002. Effects of an antioxidant-rich juice (sea buckthorn) on risk factors for coronary heart disease in humans. J Nutr Biochem 13: 346-354. https://doi.org/10.1016/S0955-2863(02)00179-1
  4. Zeb A. 2004. Important therapeutic uses of sea buckthorn (Hippophae): a review. J Biological Sciences 4: 687-693. https://doi.org/10.3923/jbs.2004.687.693
  5. Chauhan AS, Negi PS, Ramteke RS. 2007. Antioxidant and antibacterial activities of aqueous extract of Seabuckthorn (Hippophae rhamnoides) seeds. Fitoterapia 78: 590-592. https://doi.org/10.1016/j.fitote.2007.06.004
  6. Padwad Y, Ganju L, Jain M, Chanda S, Karan D, Kumar Banerjee P, Chand Sawhney R. 2006. Effect of leaf extract of Seabuckthorn on lipopolysaccharide induced inflammatory response in murine macrophages. Int Immunopharmacol 6: 46-52. https://doi.org/10.1016/j.intimp.2005.07.015
  7. Tiffany TYG, Stefan C, Arnie H. 2005. Effect of drying on the nutraceutical quality of sea buckthorn (Hippophae rhamnoides L. ssp. sinensis) leaves. J Food Sci 70: 514-518.
  8. Geetha S, Sai Ram M, Mongia SS, Singh V, Ilavazhagan G, Sawhney RC. 2003. Evaluation of antioxidant activity of leaf extract of Seabuckthorn (Hippophae rhamnoides L.) on chromium (Ⅵ) induced oxidative stress in albino rats. J Ethnopharmacol 87: 247-251. https://doi.org/10.1016/S0378-8741(03)00154-5
  9. Mizuno T, Wasa T, Ito H, Suzuki C, Ukai N. 1992. Antitumor- active polysaccharides isolated from the fruiting body of Hericium erinaceum, an edible and medicinal mushroom called yamabushitake or houtou. Biosci Biotechnol Biochem 56: 347-348. https://doi.org/10.1271/bbb.56.347
  10. Yang BK, Park JB, Song CH. 2003. Hypolipidemic effect of an exo-biopolymer produced from a submerged mycelial culture of Hericium erinaceus. Biosci Biotechnol Biochem 67: 1292-1298. https://doi.org/10.1271/bbb.67.1292
  11. Kim H, Park CK, Jeong JH, Jeong HS, Lee HY, Yu KW. 2009. Immune stimulation and anti-metastasis of crude polysaccharide from submerged culture of Hericium erinaceum in the medium supplemented with Korean ginseng extracts. J Korean Soc Food Sci Nutr 38: 1535-1542. https://doi.org/10.3746/jkfn.2009.38.11.1535
  12. Kim H, Jeong JH, Hwang JH, Jeong HS, Lee HY, Yu KW. 2010. Enhancement of immunostimulation and anti-metastasis in submerged culture of bearded tooth mushroom (Hericium erinaceum) mycelia by addition of ginseng extract. Food Sci Biotechnol 19: 1259-1266. https://doi.org/10.1007/s10068-010-0180-1
  13. Brand-Williams W, Cuvelier ME, Berset C. 1995. Use of a free radical method to evaluate antioxidant activity. Food Sci Technol 28: 25-30.
  14. Ohkawa H, Ohishi N, Yagi K. 1979. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95: 351-358. https://doi.org/10.1016/0003-2697(79)90738-3
  15. Kang JH, Kim SM. 1997. DNA cleavage by hydroxyl radicals generated in the Cu,Zn-superoxide dismutase and hydrogen peroxide system. Mol Cells 7: 777-782.
  16. Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. https://doi.org/10.1038/227680a0
  17. Ahn EH, Kim DW, Shin MJ, Kim YN, Kim HR, Woo SJ, Kim SM, Kim DS, Kim J, Park J, Eum WS, Hwang HS, Choi SY. 2013. PEP-1-ribosomal protein S3 protects dopaminergic neurons in an MPTP-induced Parkinson's disease mouse model. Free Radic Biol Med 55: 36-45. https://doi.org/10.1016/j.freeradbiomed.2012.11.008
  18. Kim MJ, Kim DW, Park JH, Kim SJ, Lee CH, Yong JI, Ryu EJ, Cho SB, Yeo HJ, Hyeon J, Cho SW, Kim DS, Son O, Park J, Han KH, Cho YS, Eum WS, Choi SY. 2013. PEP-1-SIRT2 inhibits inflammatory response and oxidative stress-induced cell death via expression of antioxidant enzymes in murine macrophages. Free Radic Biol Med 63: 432-445. https://doi.org/10.1016/j.freeradbiomed.2013.06.005
  19. McKee T, McKee JR. 2002. Biochemistry: the molecular basis of life. McGraw-Hill, New York, NY, USA. p 319-324
  20. Oh YJ, Seo HR, Choi YM, Jung DS. 2010. Evaluation of antioxidant activity of the extracts from the aerial parts of Cnidium officinale Makino. Korean J Medicinal Crop Sci 18: 373-378.
  21. Hermann K. 1989. Occurrence and content of hydroxycinnamic and hydroxylbenzoic acid compounds in foods. Crit Rev Food Sci Nutr 28: 315-347. https://doi.org/10.1080/10408398909527504
  22. Yusof S, Ghazali HM, King GS. 1990. Naringin content in local citrus fruits. Food Chem 37: 113-121. https://doi.org/10.1016/0308-8146(90)90085-I
  23. Heo SI, Jung HJ, Kim MK, Wang MH. 2007. Antioxidative activities and tyrosinase inhibitory effects of Korean medicinal plants. J Appl Biol Chem 50: 115-119.
  24. Lee YM, Bae JH, Jung HY, Kim JH, Park DS. 2011. Antioxidant activity in water and methanol extracts from Korean edible wild plants. J Korean Soc Food Sci Nutr 40: 29-36. https://doi.org/10.3746/jkfn.2011.40.1.029
  25. Prior RL, Wu X, Schaich K. 2005. Standardized method for the determination of antioxidant capacity and phenolics in foods and dietary supplement. J Agric Food Chem 53: 4290- 4302. https://doi.org/10.1021/jf0502698
  26. Pang X, Zhao J, Zhang W, Zhuang X, Wang J, Xu Z, Qu W. 2008. Antihypertensive effect of total flavones extracted from seed residues of Hippophae rhamnoides L. in sucrose- fedrats. J Ethnopharmacol 117: 325-331. https://doi.org/10.1016/j.jep.2008.02.002
  27. Kim KM, Park MH, Kim KH, Im SH, Park YH, Kim YN. 2009. Analysis of chemical composition and in vitro anti- oxidant properties of extracts from sea buckthorn (Hippophae rhamnoides). J Appl Biol Chem 52: 58-64. https://doi.org/10.3839/jabc.2009.011
  28. Niki E, Kawakami A, Saito M, Yamamoto Y, Tsuchiya J, Kamiya Y. 1985. Effect of phytyl side chain of vitamin E on its antioxidant activity. J Biol Chem 260: 2191-2196.
  29. Sawa T, Akaike T, Kida K, Fukushima Y, Takagi K, Maeda H. 1998. Lipid peroxyl radicals from oxidized oils and heme-iron: implication of a high-fat diet in colon carcinogenesis. Cancer Epidemoil Biomrkers Prev 7: 1007-1012.
  30. Dix TA, Aikens J. 1993. Mechanisms and biological relevance of lipid peroxidation initiation. Chem Res Toxicol 6: 2-18. https://doi.org/10.1021/tx00031a001
  31. Niki E. 1987. Antioxidants in relation to lipid peroxidation. Chem Phys Lipids 44: 227-253. https://doi.org/10.1016/0009-3084(87)90052-1
  32. Hiramoto K, Johkoh H, Sako K, Kikugawa K. 1993. DNA breaking activity of the carbon-centered radical generated from 2,2'-azobis(2-amidinopropane) hydrochloride (AAPH). Free Radic Res Commun 19: 323-332. https://doi.org/10.3109/10715769309056521
  33. Landi L, Fiorentini D, Galli MC, Sequra-Aquilar J, Beyer RE. 1997. DT-Diaphorase maintains the reduced state of ubiquinones in lipid vesicles thereby promoting their antioxidant function. Free Radic Biol Med 22: 329-335. https://doi.org/10.1016/S0891-5849(96)00294-8
  34. Ames BN. 1983. Dietary carcinogens and anticarcinogens. Oxygen radicals and degenerative diseases. Science 221: 1256-1264. https://doi.org/10.1126/science.6351251
  35. Cerutti PA. 1985. Prooxidant states and tumor promotion. Science 227: 375-381. https://doi.org/10.1126/science.2981433
  36. Sagripanti JL, Kraemer KH. 1989. Site-specific oxidative DNA damage at polyguanosines produced by copper plus hydrogen peroxide. J Biol Chem 264: 1729-1734.
  37. Finkel T, Holbrook NJ. 2000. Oxidants, oxidative stress and the biology of ageing. Nature 408: 239-247. https://doi.org/10.1038/35041687
  38. Kawanishi S, Hiraku Y, Oikawa S. 2001. Mechanism of guanine-specific DNA damage by oxidative stress and its role in carcinogenesis and aging. Mutat Res 488: 65-76. https://doi.org/10.1016/S1383-5742(00)00059-4
  39. Stadtman ER, Berlett BS. 1991. Fenton chemistry. Amino acid oxidation. J Biol Chem 266: 17201-17211.
  40. Davies KJ, Delsignore ME. 1987. Protein damage and degradation by oxygen radicals. III. Modification of secondary and tertiary structure. J Biol Chem 262: 9908-9913.
  41. Levine RL, Oliver CN, Fulks RM, Stadtman ER. 1981. Turnover of bacterial glutamine synthetase: oxidative inactivation precedes proteolysis. Proc Natl Acad Sci USA 78: 2120-2124. https://doi.org/10.1073/pnas.78.4.2120
  42. Rivett AJ, Levine RL. 1990. Metal-catalyzed oxidation of Escherichia coli glutamine synthetase: correlation of structural and functional changes. Arch Biochem Biophys 278: 26-34. https://doi.org/10.1016/0003-9861(90)90226-O
  43. Hashimoto M, Takeda A, Hsu LJ, Takenouchi T, Masliah E. 1999. Role of cytochrome c as a stimulator of alpha-synuclein aggregation in Lewy body disease. J Biol Chem 274: 28849-28852. https://doi.org/10.1074/jbc.274.41.28849
  44. Carden MJ, Trojanowski JQ, Schlaepfer WW, Lee VM. 1987. Two-stage expression of neurofilament polypeptides during rat neurogenesis with early establishment of adult phosphorylation patterns. J Neurosci 7: 3489-3504.
  45. Perrot R, Eyer J. 2009. Neuronal intermediate filaments and neurodegenerative disorders. Brain Res Bull 80: 282-295. https://doi.org/10.1016/j.brainresbull.2009.06.004
  46. Kyeong IG, Eum WS, Choi SY, Kang JH. 2013. Oxidative modification of neurofilament-L and neuronal cell death induced by the catechol neurotoxin, tetrahydropapaveroline. Toxicol Lett 217: 59-66. https://doi.org/10.1016/j.toxlet.2012.11.029
  47. Scott MD, Meshnick SR, Eaton JW. 1987. Superoxide dismutase- rich bacteria. Paradoxical increase in oxidant toxicity. J Biol Chem 262: 3640-3645.
  48. Scott MD, Meshnick SR, Easton JW. 1989. Superoxide dismutase amplifies organismal sensitivity to ionizing radiation. J Biol Chem 264: 2498-2501.
  49. Amstad P, Moret R, Cerutti P. 1994. Glutathione peroxidase compensates for the hypersensitivity of Cu,Zn-superoxide dismutase overproducers to oxidant stress. J Biol Chem 269: 1606-1609.
  50. Elroy-Stein O, Groner Y. 1988. Impaired neurotransmitter uptake in PC12 cells overexpressing human Cu/Zn-superoxide dismutase--implication for gene dosage effects in Down syndrome. Cell 52: 259-267. https://doi.org/10.1016/0092-8674(88)90515-6
  51. Elroy-Stein O, Bemstein Y, Groner Y. 1986. Overproduction of human Cu/Zn-superoxide dismutase in transfected cells: extenuation of paraquat-mediated cytotoxicity and enhancement of lipid peroxidation. EMBO J 5: 615-622.
  52. Ceballos-Picot I, Nichole A, Briand P, Grimber G, Delacourte A, Defossez A, Javoy-Aqid F, Lafon M, Blouin JL, Sinet PM. 1991. Neuronal-specific expression of human copper-zinc superoxide dismutase gene in transgenic mice: animal model of gene dosage effects in Down's syndrome. Brain Res 552: 198-214. https://doi.org/10.1016/0006-8993(91)90084-9
  53. Serra JA, Famulari AL, Kohan S, Marschoff ER, Dominguez RO, de Lustig ES. 1994. Copper-zinc superoxide dismutase activity in red blood cells in probable Alzheimer's patients and their first-degree relatives. J Neurol Sci 122: 179-188. https://doi.org/10.1016/0022-510X(94)90297-6
  54. Kushleika J, Checkoway H, Woods JS, Moon JD, Smith- Weller T, Franklin GM, Swanson PD. 1996. Selegiline and lymphocyte superoxide dismutase activities in Parkinson's disease. Ann Neurol 39: 378-381. https://doi.org/10.1002/ana.410390315
  55. Fitzgerald DJ. 1995. Zinc and Alzheimer's disease. Science 268: 1920-1923. https://doi.org/10.1126/science.7604268
  56. Heilmann L, Calis I, Kirmizibekmez H, Schuhly W, Harput S, Sticher O. 2000. Radical scavenger activity of phenylethanoid glycosides in FMLP stimulated human polymorphonuclear leukocytes: structure-activity relationships. Planta Med 66: 746-748. https://doi.org/10.1055/s-2000-9566
  57. Rosen D, Siddique T, Patterson D, Figlewiez DA, Sapp P, Hentati A, Donaldson D, Goto J, O'Regan JP, Deng HX, Rahmani Z, Krrizus A, McKenna-Yasek D, Cayabyab A, Gaston SM, Berger R, Tanzi RE, Halperin JJ, Herzfeldt B, Van den Bergh R, Hung WY, Bird T, Deng G, Mulder DW, Smyth C, Lain NG, Soriano E, Pericak-Vance MA, Haines J, Rouleau GA, Gusella JS, Horvitz HR, Brown Jr RH. 1993. Mutation in Cu,Zn-superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature (London) 362: 59-62. https://doi.org/10.1038/362059a0
  58. Lee HJ, Lee BJ, Lee DS, Seo Y. 2003. DPPH radical scavenging effect and in vitro lipid peroxidation inhibition by Portulaca olecea. Korean J Biotechnol Bioeng 18: 165-169.
  59. Halliwell B, Gutteridge JM. 1985. The importance of free radicals and catalytic metal irons in human disease. Mol Aspects Med 8: 89-193. https://doi.org/10.1016/0098-2997(85)90001-9
  60. Radak Z, Kumagai S, Taylor AW, Naito H, Goto S. 2007. Effects of exercise on brain function: role of free radical. Appl Physiol Nutr Metab 32: 942-946. https://doi.org/10.1139/H07-081
  61. Groswami R, Dawson G. 2000. Does ceramide play a role in neural cell apoptosis? J Neurosci Res 60: 141-149. https://doi.org/10.1002/(SICI)1097-4547(20000415)60:2<141::AID-JNR2>3.0.CO;2-5
  62. Chen CF, Lang SY, Zuo PP, Yang N, Wang XQ, Xia C. 2006. Effects of D-galactose on the expression of hippocampal peripheral-type benzodiazepine receptor and spatial memory performances in rats. Psychoneuroendocrinology 31: 805-811. https://doi.org/10.1016/j.psyneuen.2006.03.004
  63. Cui X, Zuo P, Zhang Q, Li X, Hu Y, Long J, Packer L, Liu J. 2006. Chronic systemic D-galactose exposure induces memory loss, neurodegeneration, and oxidative damage in mice: protective effects of R-alpha-lipoic acid. J Neurosci Res 83: 1584-1590. https://doi.org/10.1002/jnr.20845
  64. Sun WS, Yu HQ, Zhang H, Zheng YL, Wang JJ, Luo L. 2007. Quercetin attenuates spontaneous behavior and spatial memory impairment in D-galactose-treated mice by increasing brain antioxidant capacity. Nutr Res 27: 169-175. https://doi.org/10.1016/j.nutres.2007.01.010

Cited by

  1. 버섯균사체 발효 뽕잎 추출물의 항산화 활성 vol.34, pp.4, 2015, https://doi.org/10.12925/jkocs.2017.34.4.1025
  2. 항산화 효소의 산화적 변형에 뽕잎 발효물이 미치는 영향 vol.36, pp.3, 2019, https://doi.org/10.12925/jkocs.2019.36.3.985