DOI QR코드

DOI QR Code

마이크로 채널 디자인에 따른 온 칩 액체 냉각 연구

Study of On-chip Liquid Cooling in Relation to Micro-channel Design

  • 원용현 (서울과학기술대학교 NID융합기술대학원) ;
  • 김성동 (서울과학기술대학교 기계시스템디자인공학과) ;
  • 김사라은경 (서울과학기술대학교 NID융합기술대학원)
  • Won, Yonghyun (Graduate School of NID Fusion Technology, Seoul National Univ. of Science and Technology) ;
  • Kim, Sungdong (Department of Mechanical System Design Engineering, Seoul National University of Science and Technology) ;
  • Kim, Sarah Eunkyung (Graduate School of NID Fusion Technology, Seoul National Univ. of Science and Technology)
  • 투고 : 2015.10.19
  • 심사 : 2015.12.24
  • 발행 : 2015.12.30

초록

전자소자의 다기능, 고밀도, 고성능, 그리고 소형화는 전자 패키지 기술에 초미세 피치 플립 칩, 3D 패키지, 유연 패키지, 등 새로운 기술 패러다임 전환을 가져왔으며, 이로 인해 패키지 된 칩의 열 관리는 소자의 성능을 좌우하는 중요한 요소로 대두되고 있다. Heat sink, heat spreader, TIM, 열전 냉각기, 등 많은 소자 냉각 방법들 중 본 연구에서는 냉매를 이용한 on-chip 액체 냉각 모듈을 Si 웨이퍼에 제작하고, 마이크로 채널 디자인에 따른 냉각 효과를 분석하였다. 마이크로 채널은 딥 반응성 이온 에칭을 이용하여 형성하였고, 3 종류 디자인(straight MC, serpentine MC, zigzag MC)으로 제작하여 마이크로 채널 디자인이 냉각 효율에 미치는 영향을 관찰하였다. 가열온도 $200^{\circ}C$, 냉매 유동속도 150 ml/min의 경우에서 straight MC가 약 $44^{\circ}C$의 높은 냉각 전후의 온도 차를 보였다. 냉매의 흐름과 상 변화는 형광현미경으로 관찰하였으며, 냉각 전후의 온도 차는 적외선현미경을 이용하여 분석하였다.

The demand for multi-functionality, high density, high performance, and miniaturization of IC devices has caused the technology paradigm shift for electronic packaging. So, thermal management of new packaged chips becomes a bottleneck for the performance of next generation devices. Among various thermal solutions such as heat sink, heat spreader, TIM, thermoelectric cooler, etc. on-chip liquid cooling module was investigated in this study. Micro-channel was fabricated on Si wafer using a deep reactive ion etching, and 3 different micro-channel designs (straight MC, serpentine MC, zigzag MC) were formed to evalute the effectiveness of liquid cooling. At the heating temperature of $200^{\circ}C$ and coolant flow rate of 150ml/min, straight MC showed the high temperature differential of ${\sim}44^{\circ}C$ after liquid cooling. The shape of liquid flowing through micro-channel was observed by fluorescence microscope, and the temperarue differential of liquid cooling module was measuremd by IR microscope.

키워드

참고문헌

  1. A. J. McNamara, Y. Joshi, and Z. M. Zhang, "Characterization of nanostructured thermal interface materials: A review", Int. J. Therm. Sci., 62, 2 (2011).
  2. Jun Xu and Timoth S. Fisher, "Enhancement of thermal interface materials with carbon nanotube arrays", Int. J. Heat and Mass Trans., 49(9-10), 1658 (2006). https://doi.org/10.1016/j.ijheatmasstransfer.2005.09.039
  3. Sara N. Paisner, "Nanotechnology and methematical methods for high-performance thermal interface material", Global SMT & Package. 36 (2008).
  4. J. Ayala, A. Sridhar, V. pangracious, D. Atienza, and Y. Leblebici, "Through silicon vias-based grid for thermal control in 3D chips", Social Infromatics and Telecommunications Engineering, 90 (2008).
  5. B. Goplen and S. Sapatnekar, "Thermal Via Placement in 3D ICs", International symposium on physical design, 167 (2005).
  6. G. Upadhya, M. Munch, P. Zhou, J. Hom, D. Werner, and M. McMaster, "Micro-scale liquid cooling system for high heat flux processor cooling applications", IEEE STMM., 116 (2006).
  7. J. Li and G. P. Peterson, "Geometric optimization of a micro heat sink with liquid flow", IEEE Trans. Comp. Packag. Tech., 29(1), 145 (2006). https://doi.org/10.1109/TCAPT.2005.853170
  8. X. Wei and Y. Joshi, "Optimization Study of Stacked Micro- Channel Heat Sinks for Micro-Electronic Cooling", IEEE Trans. on Comp. Packag. Tech., 26(1), 55 (2003). https://doi.org/10.1109/TCAPT.2003.811473
  9. N. Khan, L. H. Yu, T. S. Pin, S. W. Ho, V. Kripesh, D. Pinjala J. H. Lau, and T. K. Chuan, "3-D Packaging With Through-Silicon Via (TSV) for Electrical and Fluidic Interconnections", IEEE Trans. Comp., Packag., and Manuf. Tech., 3(2), 221 (2013). https://doi.org/10.1109/TCPMT.2012.2186297
  10. B. Dang, M. S. Bakir, and J. D. Meindl, "Integrated thermalfluidic I/O interconnects for an on-chip microchannel heat sink", IEEE EDL, 27, 117 (2006). https://doi.org/10.1109/LED.2005.862693
  11. M. Park, S. Kim, and S. E. Kim, "Study of Chip-level Liquid Cooling for High-heat-flux Devices", J. Microelectron. Packag. Soc., 22(2), 27 (2015). https://doi.org/10.6117/kmeps.2015.22.2.027
  12. M. Park, S. Kim, and S. E. Kim, "TSV Liquid Cooling System for 3D Integrated Circuits", J. Microelectron. Packag. Soc., 20(3), 1 (2013). https://doi.org/10.6117/KMEPS.2013.20.3.001
  13. T. Harirchian and S. V. Garimella, "Microchannel size effects on local flow boiling heat transfer to a dielectric fluid", Int. J. Heat and Mass Transfer, 51, 3724 (2008). https://doi.org/10.1016/j.ijheatmasstransfer.2008.03.013