DOI QR코드

DOI QR Code

유연 기판을 이용한 PLC소자 제작을 위한 롤투롤 공정 연구

PLC Devices Fabricated on Flexible Plastic Substrate by Roll-to-Roll Imprint Lithography

  • 강호주 (부산대학교 인지메카트로닉스공학과) ;
  • 김태훈 (부산대학교 인지메카트로닉스공학과) ;
  • 정명영 (부산대학교 인지메카트로닉스공학과)
  • Kang, Ho Ju (Department of Cogno-Mechatronics Engineering, Pusan National University) ;
  • Kim, Taehoon (Department of Cogno-Mechatronics Engineering, Pusan National University) ;
  • Jeong, Myung Yung (Department of Cogno-Mechatronics Engineering, Pusan National University)
  • 투고 : 2015.08.31
  • 심사 : 2015.12.24
  • 발행 : 2015.12.30

초록

저가격, 높은 생산성, 고해상도를 가지는 소자의 패턴 제작 방법에 대한 요구가 계속적으로 증가하고 있다. 롤투롤 연속생산 공정은 저비용, 대량생산이 가능한 차세대 공정으로 각광받고 있다. 본 논문에서는 PLC (planar lightwave circuit) 소자의 제작을 위해서 롤투롤 공정을 이용하여 제조하는 방법을 연구하였다. 제안한 기술은 polydimethylsiloxane (PDMS) 고분자를 이용하여 롤투롤 공정을 통해 PLC소자를 제작하는 공정을 연구하였다. 실리콘 웨이퍼에 형성된 마이크로 패턴을 복제 공정을 수행하였으며 이를 원통금형에 적용하여 롤투롤 공정의 롤 몰드(roll mold)로 사용하였다. 웹 텐션과 웹 속도의 공정 조건 최적화로 롤투롤 공정을 이용하여 PLC소자를 제작하였다. 제작된 PLC소자는 약4.0dB의 삽입손실을 가지는 $1{\times}2$ 광분배기이며, 제안한 롤투롤 공정 기술을 이용한 PLC소자의 제작 공정이 대량연속생산에 유효함을 확인하였다.

Demand for a low-cost, high-throughput, and high-resolution patterning method for fabricating devices continues to increase. The roll-to-roll (R2R) imprint lithography technique has received a great deal of attention as a means of fabricating next-generation devices. In this paper, we propose a fabrication method for polymeric planar lightwave circuit (PLC) devices that uses R2R imprint lithography. The proposed technique uses an elastomeric polydimethylsiloxane (PDMS) mold. A Si wafer with micro patterns is used as the Si master. The PDMS mold is then replicated from the Si master. By applying a precise web tension and at a given web speed, we fabricated a micro-patterned PLC device. The insertion losses were 4.0 dB for a $1{\times}2$ optical splitter. As such, the proposed method of fabricating a PLC device by the R2R process was shown to be an effective solution.

키워드

참고문헌

  1. J. Ryu, B. Lee, K.-H. Baek, L.-M. Do, J. Park, S.-U. Cho and M. Jeong, "Fabrication of low-loss optical interconnected waveguide using a replicated seamless large-area polymeric mold", Journal of the Korean Physical Society, 65, 450 (2014). https://doi.org/10.3938/jkps.65.450
  2. J. H. Ryu, P. J. Kim, C. S. Cho, E.-H. Lee, C.-S. Kim and M. Y. Jeong, "Optical interconnection for a polymeric plc device using simple positional alignment", Opt. Express., 19, 8571 (2011). https://doi.org/10.1364/OE.19.008571
  3. W. Ni, X. Wu and J. Wu, "Layer-to-layer optical interconnect coupling by soft-lithographic stamping", Opt. Express 17, 1194 (2009). https://doi.org/10.1364/OE.17.001194
  4. X. Dou, X. Wang, H. Huang, X. Lin, D. Ding, D. Z. Pan and R. T. Chen, "Polymeric waveguides with embedded micromirrors formed by metallic hard mold", Opt. Express, 18, 378 (2010). https://doi.org/10.1364/OE.18.000378
  5. S. Uhlig, L. Frohlich, M. Chen, N. Arndt-Staufenbiel, G. Lang, H. Schroder, R. Houbertz, M. Popall and M. Robertsson, "Polymer optical interconnects; a scalable large-area panel processing approach", Advanced Packaging, IEEE Transactions on 29, 158 (2006). https://doi.org/10.1109/TADVP.2005.849555
  6. D. M. Kim, J. H. Ryu and M. Y. Jeong, "Optical packaging and interconnection technology", J. Microelectron. Packag. Soc., 19, 13 (2012). https://doi.org/10.6117/kmeps.2012.19.4.013
  7. T. Ishigure and Y. Nitta, "Polymer optical waveguide with multiple graded-index cores for on-board interconnects fabricated using soft-lithography", Opt. Express 18, 14191 (2010). https://doi.org/10.1364/OE.18.014191
  8. S. Hwang, W.-J. Lee, M. Kim, E. Jung and B. Rho, "Design and analysis of a low loss and large-tolerance optical interface for large-area optical waveguides", Optical and Quantum Electronics, 44, 189 (2012). https://doi.org/10.1007/s11082-011-9513-4
  9. H. C. Andrew and P. K. William, "Casting metal microstructures from a flexible and reusable mold", J. Micromech. Microengineering, 19, 095016 (2009). https://doi.org/10.1088/0960-1317/19/9/095016
  10. S. H. Oh, S. U. Cho, C. S. Kim, Y. G. Han, C.-S. Cho and M. Y. Jeong, "Fabrication of nickel stamp with improved sidewall roughness for optical devices", Microelectronic Engineering, 88, 2900 (2011). https://doi.org/10.1016/j.mee.2011.03.021
  11. L. Woo-Jin, H. Sung Hwan, L. Jung Woon and R. Byung Sup, "Polymeric waveguide film with embedded mirror for multilayer optical circuits", Photonics Technology Letters, IEEE 21, 12 (2009). https://doi.org/10.1109/LPT.2008.2007970
  12. J. H. Kim, T. H. Lee, D. M. Kim and M. Y. Jeong, "A study on the design and fabrication of pluggable lens for optical pcb interconnection", J. Microelectron. Packag. Soc., 21, 25 (2014).
  13. Y. Martz and D. Knittel, "Robust control in industrial roll-toroll systems: New approaches using finite element modeling of the web", Industrial Technology (ICIT), 2015 IEEE International Conference on, pp. 464 (2015).

피인용 문헌

  1. High-performance flexible waveguide-integrated photodetectors vol.5, pp.1, 2018, https://doi.org/10.1364/OPTICA.5.000044
  2. High-speed Sintering of Ag-based Composite Ink by Nano-soldering vol.36, pp.2, 2015, https://doi.org/10.5781/jwj.2018.36.2.2
  3. InP계 리지 도파로 구조에서 활성층-수동층 버트 조인트의 광결합 효율 최적화 연구 vol.27, pp.4, 2015, https://doi.org/10.6117/kmeps.2020.27.4.047
  4. Deformation Analysis of Roll Mold for Nano-flexible Devices vol.28, pp.4, 2021, https://doi.org/10.6117/kmeps.2021.28.4.047