DOI QR코드

DOI QR Code

Effects of the Heat Treatment on the Microstructure and Mechanical Properties of the Diffusion-Bonded Ferritic/Martensitic Steel

확산접합된 페라이트/마르텐사이트강의 미세조직 및 기계적 특성에 미치는 열처리 효과

  • 사인진 (한국원자력연구원 수소생산원자로기술개발부) ;
  • 김성환 (한국과학기술원 원자력및양자공학과) ;
  • 홍성훈 (한국과학기술원 원자력및양자공학과) ;
  • 장창희 (한국과학기술원 원자력및양자공학과)
  • Received : 2015.05.01
  • Accepted : 2015.06.29
  • Published : 2015.06.30

Abstract

As a measure of improving the mechanical properties of a diffusion bonded joint of a ferritic/martensitic steel (FMS), the post-bonding heat treatment (PBHT) is applied. In the temperature range of normalizing condition ($950-1,050^{\circ}C$), diffusion bonding is employed with compressive stress (6 MPa). Due to the martensite structure distributed in the matrix, Vicker's hardness values of the as-bonded are much higher than those of the as-received. Through the PBHT for 1 h at $720^{\circ}C$, hardness values are recovered to as low as those of the as-received condition. Also, tensile properties of PBHT are similar to those of the as-received at up to the test temperature of $550^{\circ}C$, when the diffusion bonding is carried out over $1,000^{\circ}C$. Based on the creep-rupture testing performed at $650^{\circ}C$ in air environment, the joint efficiency of the PBHTed specimens is about 80% in, which is higher than that of the as-bonded specimens.

Keywords

References

  1. Murty, K. L. and Charit, I., 2008, "Structural Materials for Gen-IV Nuclear Reactors: Challenges and Opportunities," J. Nucl. Mater., Vol. 383, No. 1-2, pp. 189-195. https://doi.org/10.1016/j.jnucmat.2008.08.044
  2. Klueh, R. L. and Nelson, A. T., 2007, "Ferritic/martensitic Steels for Next-generation Reactors," J. Nucl. Mater., Vol. 371, No. 1-3, pp. 37-52. https://doi.org/10.1016/j.jnucmat.2007.05.005
  3. Ukai, S. and Fujiwara, M., 2002, "Perspective of ODS Alloys Application in Nuclear Environments," J. Nucl. Mater., Vol. 307-311, No. 1, pp. 749-757. https://doi.org/10.1016/S0022-3115(02)01043-7
  4. Klueh, R. L., Shingledecker, J. P., Swindeman, R. W., and Hoelzer, D. T., 2005, "Oxide Dispersionstrengthened Steels: A Comparison of Some Commercial and Experimental Alloys," J. Nucl. Mater., Vol. 341, No. 2-3, pp. 103-114. https://doi.org/10.1016/j.jnucmat.2005.01.017
  5. Song, M., Sun, C., Jang, J., Han, C. H., Kim, T. K., Hartwig, K. T., and Zhang, X., 2013, "Microstructure Refinement and Strengthening Mechanisms of a 12Cr ODS Steel Processed by Equal Channel Angular Extrusion," J. Alloys Compd., Vol. 577, pp. 247-256. https://doi.org/10.1016/j.jallcom.2013.04.198
  6. Noh, S., Kasada, R., and Kimura, A., 2011, "Solid-state Diffusion Bonding of High-Cr ODS Ferritic Steel," Acta Mater., Vol. 59, No. 8, pp. 3196-3204. https://doi.org/10.1016/j.actamat.2011.01.059
  7. Chen, C. -L., Tatlock, G. J., and Jones, A. R., 2010, "Microstructural Evolution in Friction Stir Welding of Nanostructured ODS Alloys," J. Alloys Compd., Vol. 504S, pp. S460-S466.
  8. Schleisiek, K., Lechler, T., Schäfer, L., and Weimar, P., 2000, "Diffusion Welding Parameters and Mechanical Properties of Martensitic Chromium Steels," J. Nucl. Mater., Vol. 283-287, No. 2, pp. 1196-1200. https://doi.org/10.1016/S0022-3115(00)00173-2
  9. Furuya, K., Wakai, E., Ando, M., Sawai, T., Iwabuchi, A., Nakamura, K., and Takeuchi, H., 2003, "Tensile and Impact Properties of F82H Steel Applied to HIP-bond Fusion Blanket Structures," Fusion Eng. Des., Vol. 69, No. 1-4, pp. 385-389. https://doi.org/10.1016/S0920-3796(03)00079-6
  10. Maruyama, K., Sawada, K., and Koike, J., 2001, "Strengthening Mechanisms of Creep Resistant Tempered Martensitic Steel," ISIJ Int., Vol. 41, No. 6, pp. 641-653. https://doi.org/10.2355/isijinternational.41.641