DOI QR코드

DOI QR Code

Carbon Reduction Effects of Urban Landscape Trees and Development of Quantitative Models - For Five Native Species -

도시 조경수의 탄소저감 효과와 계량모델 개발 - 5개 향토수종을 대상으로 -

  • Jo, Hyun-Kil (Dept. of Landscape Architecture, Kangwon National University) ;
  • Kim, Jin-Young (Dept. of Landscape Architecture, Graduate School, Kangwon National University) ;
  • Park, Hye-Mi (Dept. of Landscape Architecture, Graduate School, Kangwon National University)
  • Received : 2014.06.17
  • Accepted : 2014.09.03
  • Published : 2014.10.31

Abstract

This study generated regression models to quantify storage and annual uptake of carbon from five native landscape tree species through a direct harvesting method, and established essential information to estimate carbon reduction effects from urban greenspaces. Tree species for the study included the Chionanthus retusus, Prunus armeniaca, Abies holophylla, Cornus officinalis, and Taxus cuspidata, which are usually planted in cities of middle Korea, but for which no information on carbon reduction is available. Ten tree individuals for each species were sampled reflecting various stem diameter sizes at a given interval. The study measured biomass for each part including the roots of sample trees to compute total carbon storage per tree. The annual carbon uptake per tree was quantified by analyzing the radial growth rates of stem samples at breast height or ground level. Regression models were developed using diameter at breast height (dbh) or ground level (dg) as an independent variable to easily estimate storage and annual uptake of carbon per tree for each species. All the regression models showed high fitness with $r^2$ values of 0.92~0.99. Storage and annual uptake of carbon from a tree with dbh of 10 cm were greatest with C. retusus (20.0 kg and 5.9 kg/yr, respectively), followed by P. armeniaca (17.5 kg and 4.5 kg/yr) and A. holophylla (13.2kg and 1.8 kg/yr) in order. A C. officinalis tree and T. cuspidata tree with dg of 10 cm stored 9.3 and 6.3 kg of carbon and annually sequestered 3.2 and 0.6 kg, respectively. The above-mentioned carbon storage equaled the amount of carbon emitted from gasoline consumption of about 23~35 L for C. retusus, P. armeniaca, and A. holophylla, and 11~16 L for C. officinalis and T. cuspidata. A tree with the diameter size of 10 cm annually offset carbon emissions from gasoline use of about 6~10 L for C. retusus, P. armeniaca, and C. officinalis, and 1~3 L for A. holophylla and T. cuspidata. The study breaks new ground to easily quantify biomass and carbon reduction for the tree species by overcoming difficulties in direct cutting and root digging of urban landscape trees.

본 연구는 중부지방 도시에 흔히 식재하는 5개의 향토 조경수종을 대상으로, 직접수확법을 통해 수종별 탄소의 저장 및 연간 흡수를 용이하게 산정하는 계량모델을 제시하고, 도시녹지의 탄소저감 효과를 계량화하는데 필요한 기반정보를 구축하였다. 연구대상 수종은 탄소저감 관련 정보가 전무한 이팝나무, 살구나무, 전나무, 산수유, 주목 등이었다. 유목에서 성목에 이르는 일정 간격의 줄기 직경 크기를 고려하여 수종별로 10개체씩, 총 50개체의 수목을 구입하였다. 그리고, 근굴취를 포함하는 직접수확법에 의해 개체당 부위별 및 전체 생체량을 산정하고 탄소저장량을 산출하였다. 수종에 따라 흉고직경 또는 근원직경 부위의 줄기 원판을 채취하여, 직경생장을 분석하고 연간 탄소흡수량을 산정하였다. 직경을 독립변수로 생장에 따른 수종별 단목의 탄소저장 및 연간 탄소흡수를 산출하는 활용 용이한 계량모델을 유도하였다. 이들 회귀식의 $r^2$은 0.92~0.99로서 적합도가 높았다. 흉고직경 10cm인 단목의 탄소저장량 및 연간 탄소흡수량은 이팝나무가 각각 20.0kg/주 및 5.9kg/주/년으로서 가장 많았고, 다음으로 살구나무 17.5kg/주 및 4.5kg/주/년, 전나무 13.2kg/주 및 1.8kg/주/년 등의 순이었다. 근원직경 10cm인 산수유와 주목의 경우는 각각 9.3kg/주 및 3.2kg/주/년, 6.3kg/주 및 0.6kg/주/년이었다. 이 탄소저장량은 이팝나무, 살구나무 및 전나무의 경우 23~35L의 휘발유 소비, 그리고 산수유 및 주목은 11~16L의 휘발유 소비로부터 배출되는 탄소량에 상당하였다. 또한, 상기한 직경의 이팝나무, 살구나무 및 산수유 한 그루는 6~10L의 휘발유 소비, 그리고 전나무와 주목의 경우는 1~3L의 휘발유 소비로부터 배출되는 탄소량을 해마다 상쇄하는 역할을 담당하였다. 본 연구는 도시 조경수의 직접 벌목과 근굴취의 난이성을 극복하므로써, 대상 수종의 생체량을 포함하는 탄소저감을 용이하게 계량화하기 위한 새로운 초석을 마련하였다.

Keywords

References

  1. Ajtay, L. L., P. Ketner, and P. Duvigneaud(1979) Terrestrial production and phytomass. In Bolin, B., E. T. Degens, S. Kempe, and P. Ketner, eds., The Global Carbon Cycle, SCOPE Report No. 13. New York: John Wiley & Sons. pp. 129-181.
  2. Bang, K. J. and J. S. Lee(1995) Studies on planting distribution status of landscaping plants in Korea. Journal of the Korean Institute of Landscape Architecture 23(1): 67-94.
  3. Chow, P. and G. L. Rolfe(1989) Carbon and hydrogen contents of short rotation biomass of five hardwood species. Wood and Fiber Science 21(1): 30-36.
  4. Dirr, M. A.(2009) Manual of Woody Landscape Plants. Champaign, IL: Stipes Publishing Company.
  5. Jo, H. K.(1993) Landscape Carbon Budgets and Planning Guidelines for Greenspaces in Urban Residential Lands. Ph. D. Dissertation, University of Arizona, Tucson.
  6. Jo, H. K.(1999) Carbon uptake and emissions in urban landscape, and the role of urban greenspace for several cities in Kangwon Province. Journal of the Korean Institute of Landscape Architecture 27(1): 39-53.
  7. Jo, H. K.(2002) Impacts of urban greenspace on offsetting carbon emissions for middle Korea. Journal of Environmental Management 64: 115-126. https://doi.org/10.1006/jema.2001.0491
  8. Jo, H. K. and D. H. Cho(1998) Annual $CO_2$ uptake by urban popular landscape tree species. Journal of the Korean Institute of Landscape Architecture 26(2): 38-53.
  9. Jo, H. K., J. Y. Kim, and H. M. Park(2013a) Quantifying carbon reduction from evergreen landscape tree species through a direct harvesting method. Proceedings of Fall Season Conference of Korean Institute of Landscape Architecture. pp. 93-94.
  10. Jo, H. K., J. Y. Kim, and H. M. Park(2013b) Carbon storage and uptake by evergreen trees for urban landscape - for Pinus densiflora and Pinus koraiensis. Korean Journal of Environment and Ecology 27(5): 571-578. https://doi.org/10.13047/KJEE.2013.27.5.571
  11. Jo, H. K., K. E. Lee, Y. H. Yun, and O. H. Seo(1998a) Land use and greenspace structure in several cities of Kangwon province. Journal of the Korean Institute of Landscape Architecture 25(4): 171-183.
  12. Jo, H. K., K. J. Lee, and J. O. Kwon(1998b) Land use and greenspace structure in Seoul - case of Kangnam-gu and Junglang-gu. Korean Journal of Environment and Ecology 12(1): 30-41.
  13. Jo, H. K. and T. W. Ahn(2001) Annual $CO_2$ uptake and atmospheric purification by urban coniferous trees - for Pinus densiflora and Pinus koraiensis. Korean Journal of Environment and Ecology 15(2): 118-124.
  14. Jo, H. K. and T. W. Ahn(2012) Carbon storage and uptake by deciduous tree species for urban landscape. Journal of the Korean Institute of Landscape Architecture 40(5): 160-168. https://doi.org/10.9715/KILA.2012.40.5.160
  15. Korea Forest Research Institute(2007) Survey Manual for Forest Biomass and Soil Carbon. Seoul.
  16. Korea Forest Research Institute(2010a) Greenhouse Gas Inventory of Urban Green Areas - in Case of Seoul Metropolis. Research Report 10-19.
  17. Korea Forest Research Institute(2010b) Carbon Emission Coefficients of Major Tree Species to Inventory Greenhouse Gases fromForests. Research Report 10-25.
  18. Korean Institute of Agricultural Science and Technology(2000) Methods of Analysis for Soil and Plants. Suwon.
  19. Korean Institute of Landscape Architecture(2013) Landscape Design Standards. Seoul.
  20. McPherson, E. G.(1998) Atmospheric carbon dioxide reduction by Sacramento's urban forest. Journal of Arboriculture 24(4): 215-223.
  21. McPherson, E. G. and J. R. Simpson(2000) Carbon Dioxide Reduction through Urban Forestry: Guidelines for Professional and Volunteer Tree Planters. General Technical Report PSW-GTR-171. Albany, CA: USDA Forest Service, Pacific Southwest Research Station.
  22. Nowak, D. J.(1994) Atmospheric carbon dioxide reduction by Chicago's urban forest. In McPherson, E. G., D. J. Nowak, and R. A. Rowntree, eds., Chicago's Urban Forest Ecosystem: Results of the Chicago Urban Forest Climate Project. General Technical Report NE-186. Radnor, PA: USDA Forest Service, Northeastern Forest Experiment Station. pp. 83-94.
  23. Nowak, D. J. and D. E. Crane(2002) Carbon storage and sequestration by urban trees in the USA. Environmental Pollution 116: 381-389. https://doi.org/10.1016/S0269-7491(01)00214-7
  24. Ovington, J. D.(1956) The composition of tree leaves. Forestry (British Journal) 29: 22-29.
  25. Park, E. J. and K. Y. Kang(2010) Estimation of C storage and annual $CO_2$ uptake by street trees in Gyeonggi-do. Korean Journal of Environment and Ecology 24(5): 591-600.
  26. Park, I. H. and S. M. Lee(1990) Biomass and net production of Pinus densiflora natural forests of four local forms in Korea. Journal of Korean Forestry Society 79(2): 196-204.
  27. Pingrey, D. W.(1976) Forest products energy overview. In Energy and the Wood Products Industry. Madison, WI: Forest Products Research Society. pp. 1-14.
  28. Reichle, D. E., B. E. Dinger, N. T. Edwards, W. F. Harris, and P. Sollins(1973) Carbon flow and storage in a forest ecosystem. In Woodwell, G. M. and E. V. Pecan, eds., Carbon and the Biosphere. Proceedings of the 24th Brookhaven Symposium in Biology. Upton, NY: US Atomic Energy Commission, Office of Information Services. pp. 345-365.
  29. Rowntree, R. A. and D. J. Nowak(1991) Quantifying the role of urban forests in removing atmospheric carbon dioxide. Journal of Arboriculture 17(10): 269-275.
  30. Song, C. Y., K. S. Chang, K. S. Park, and S. W. Lee(1997) Analysis of carbon fixation in natural forests of Quercus mongolica and Quercus variabilis. Journal of Korean Forestry Society 86(1): 35-45.
  31. Whittaker, R. H. and P. L. Marks(1975) Methods of assessing terrestrial productivity. In Lieth, H. and R. H. Whittaker, eds., Primary Productivity of the Biosphere. New York: Springer-Verlag. pp. 55-118.
  32. http://www.climateactionreserve.org/how/protocols
  33. http://www.co2.kemco.or.kr
  34. http://www.fs.fed.us/ccrc/topics/urban-forests