DOI QR코드

DOI QR Code

Development of Hybrid Device for Photovoltaic Power Generation and Heating

복합식 태양광 발전 및 난방장치 개발

  • 이동일 (한국과학기술원 항공우주공학과) ;
  • 백승욱 (한국과학기술원 항공우주공학과)
  • Received : 2014.03.07
  • Accepted : 2014.07.30
  • Published : 2014.11.01

Abstract

The objective of this study was to increase the generating efficiency of concentrated photovoltaics (CPV) by using hybrid solar tracking. Further, the proposed system was demonstrated to have the ability to extract thermal energy from a concentrated photovoltaic system by using thermal absorbers containing heat pipe, which could then be used for a heating system or hot-water supply. The average electrical efficiency was 16 during the day, and the average thermal efficiency was 62. Therefore, this system demonstrated a total efficiency (electrical thermal) of 78. All the processes, i.e., tracking of the sun, calculation of the sun's position, reinstatement of the heating device toward the east for tracking on the next day, and system shutdown, were programmed using Simulink. A parametric analysis of the heat pipe, concentration ratio, and inlet velocity was also performed in terms of the operating temperature of the CPV and the outlet temperature. The simulation and experimental results for the thermal absorber were found to be in good agreement.

본 연구는 센서식 및 프로그램식의 태양추적장치를 이용하여 집광형 태양전지의 발전효율을 증가시키는 연구를 진행하였다. 또한 집광형 태양전지에서 발생된 열은 히트파이프를 포함한 흡열기로 회수함으로써 온수나 난방에 사용할 수 있었다. 실험 결과 집광형 태양전지의 평균 전기효율은 16%, 히트파이프를 포함한 흡열기의 열효율은 62% 로 복합효율이 78%를 나타내었다. 태양위치에 따른 실시간 추적, 일몰 이후 난방장치의 동쪽방향 원상복귀, 원상복귀후 자동종료는 Simulink 프로그램으로 구현하였다. 히트파이프 유무, 집광비, 흡열기 입구 속도에 따른 집광형 태양전지 및 흡열기 온도를 해석하였으며 실험결과와 일치하였다.

Keywords

References

  1. Timilsina, G. R., Kurdgelashvili, L. and Narbel, P. A., 2012, "Solar Energy: Markets, Economics and Policies," Renewable and Sustainable Energy Reviews, Vol. 16, pp. 449-465. https://doi.org/10.1016/j.rser.2011.08.009
  2. Cotal, H., Fetzer, C., Boisvert, J., Kinsey, G., King, R., Hebert, P., Yoon, H. and Karam, N. 2009, "III - V Multijunction Solar Cells for Concentrator Photovoltaics," Energy & Environmental Science, Vol. 2, pp. 174-192. https://doi.org/10.1039/B809257E
  3. Lee, D. I., Jeon, W. J. and Baek, S. W., 2012, "Development of Optimal Control of Heliostat System Using Configuration Factor and Solar Tracking Device," Trans. Korean Soc. Mech. Eng. B, Vol. 36, No. 12, pp. 1177-1183. https://doi.org/10.3795/KSME-B.2012.36.12.1177
  4. Anja, R., Christopher, J. D. and David, R. M., 2005, "Cooling of Photovoltaic Cells Under Concentrated Illumination: A Critical Review," Solar Energy Materials & Solar Cells, Vol. 86, pp. 451-483. https://doi.org/10.1016/j.solmat.2004.09.003
  5. Teo, H. G., Lee, P. S., M. N. and Hawlader, A., 2012, "An Active Cooling System for Photovoltaic Modules," Applied Energy, Vol. 90, pp. 309-315. https://doi.org/10.1016/j.apenergy.2011.01.017
  6. Lee, D. I. and Baek, S. W., 2014, "Development of Heating Device Using Concentrator Solar Cells," Trans. Korean Soc. Mech. Eng. B, Vol. 38, No. 1, pp. 49-56. https://doi.org/10.3795/KSME-B.2014.38.1.049
  7. Walraven, R., 1978, "Calculating the Position of the Sun," Solar Energy, Vol. 20, pp. 393-397. https://doi.org/10.1016/0038-092X(78)90155-X
  8. Karakoti, I., Das, P. K. and Bandyopadhyay, B., 2013, "An Analytical Study on Daily Solar Radiation Data," Current Science, Vol. 105, pp. 215-224.
  9. Meeus, J., 1998, "Astronomical Algorithms. William- Bell," Second Edition.
  10. Bretagnon, P., 1982, "Theory for the Motion of all the Planets - The VSOP82 solution," Astronomy and Astrophysics, Vol. 114, pp. 278-288.
  11. Bretagnon, P. and Francou, G., 1988, "Planetary Theories in Rectangular and Spherical Variables - VSOP 87 Solutions," Astronomy and Astrophysics, Vol. 202, pp. 309-315.