DOI QR코드

DOI QR Code

Study of Mössbauer Spectroscopy for Iron Oxides Synthesized by Pulsed Wire Evaporation (PEW)

전기선폭발법으로 제조된 철산화물의 뫼스바우어분광연구

  • Uhm, Young Rang (Radioisotope Research Division, Korea Atomic Energy Research Institute (KAERI))
  • 엄영랑 (한국원자력연구원 동위원소이용연구부)
  • Received : 2014.10.11
  • Accepted : 2014.10.22
  • Published : 2014.10.31

Abstract

Iron-oxide nanopowders were synthesized by a pulsed wire evaporation (PWE) in various ambient gas conditions. SEM measurement indicates that the spherical iron nanoparticles are about 50 nm in diameter. The phase analysis for the produced iron-oxide powders was systematically investigated by using $M\ddot{o}ssbauer$ spectra and the results show that classified phases of $Fe_2O_3$ and $Fe_3O_4$ can be controlled by regulating the oxygen concentration in the mixed gas during the PWE process. A quadrupole line on the center of $M\ddot{o}ssbauer$ spectrum represents the superparamagnetic phase of 12 % from ${\gamma}-Fe_2O_3$ phase.

물리적 기상합성법인 전기선폭발법을 이용하여 챔버내 산소분압을 바꾸면서 철산화물을 제조하였다. 제조된 철산화물은 산소 분압에 따라 $Fe_2O_3$$Fe_3O_4$상으로 제조되었다. 산소분압이 30 %인 경우 ${\gamma}-Fe_2O_3$${\alpha}-Fe_2O_3$와 같이 $Fe^{3+}$의 형성이 용이함을 확인 하였다. 산소 분압을 15 %로 줄이면 $Fe_3O_4$가 형성되어 $Fe^{2+}$ 이온을 확인할 수 있었다. 뫼스바우어분광분석을 활용하여 ${\gamma}-Fe_2O_3$$Fe_3O_4$상 분석을 수행하였다. 13 K에서 295 K까지의 뫼스바우어 스펙트럼으로부터 자기정렬구조가 사라진 면적비로부터 약 12 % 정도의 ${\gamma}-Fe_2O_3$상이 초상자성 특성을 보임을 확인하였다.

Keywords

References

  1. R. H. Kodama, J. Magn. Magn. Mater. 200, 359 (1999). https://doi.org/10.1016/S0304-8853(99)00347-9
  2. M. Allen, D. Willits, J. Mosolf, M. Young, and T. Douglas, Adv. Mater. 14, 1562 (2002). https://doi.org/10.1002/1521-4095(20021104)14:21<1562::AID-ADMA1562>3.0.CO;2-D
  3. M. Chatterjee, M. K. Naskar, P. K. Chakrabarty, and D. Ganguli, Mater. Lett. 57, 87 (2002). https://doi.org/10.1016/S0167-577X(02)00704-8
  4. S. Sun, H. Zeng, D. B. Robinson, S. Raoux, P. M. Rice, S. X. Wang, and G. Li, J. Ameri. Chem. Soc. 126, 273 (2004). https://doi.org/10.1021/ja0380852
  5. Y. R. Uhm, J. H. Park, W. W. Kim, C.-H. Cho, and C. K. Rhee, Mater. Sci. Eng. B 106, 224 (2004). https://doi.org/10.1016/j.mseb.2003.08.057
  6. S. H. Jun, Y. R. Uhm, and C. K. Rhee, Kor. Powd. Matal. Ins. 17, 295 (2010). https://doi.org/10.4150/KPMI.2010.17.4.295
  7. Y. R. Uhm, H. M. Lee, G. J. Lee, and C. K. Rhee, J. Magn. 14, 75 (2009). https://doi.org/10.4283/JMAG.2009.14.2.075
  8. B. S. Han, C. K. Rhee, M. K. Lee, and Y. R. Uhm, IEEE Trans. Magn. 42, 3779 (2006). https://doi.org/10.1109/TMAG.2006.884515
  9. Y. R. Uhm, C. K. Rhee, H. M. Lee, and C. S. Kim, J. Korean Phys. Soc. 57, 1609 (2010). https://doi.org/10.3938/jkps.57.1609
  10. H. M. Lee, Y. R. Uhm, and C. K. Rhee, J. Alloys Compd. 461, 604 (2008). https://doi.org/10.1016/j.jallcom.2007.07.075
  11. Y. R. Uhm and C. S. Kim, J. Appl. Phys. 89, 7344 (2001). https://doi.org/10.1063/1.1361265
  12. Y. R. Uhm, B. S. Han, M. K. Lee, S. J. Hong, and C. K. Rhee, Mater. Sci. Eng. A 449, 813 (2007).
  13. B. D. Cullity, Introduction To Magnetic Materials, Addison-Wesley, Reading, Mass., USA (1972).
  14. G. F. Donne, Properties of ferrites at low temperatures, J. Appl. Phys. 81, 5064 (1997). https://doi.org/10.1063/1.364509
  15. X. N. Xu, Y. Wolfus, A. Shaulov, Y. Yeshurun, I. Felner, I. Nowik, Yu. Koltypin, and A. Gedanken, J. Appl. Phys. 91, 4611 (2002). https://doi.org/10.1063/1.1457544