DOI QR코드

DOI QR Code

Optimal Signal Amplitude of Orthogonal Frequency-Division Multiplexing Systems in Dimmable Visible Light Communications

  • 투고 : 2014.06.25
  • 심사 : 2014.09.18
  • 발행 : 2014.10.25

초록

Visible light communications (VLC) using the intensity modulation of light-emitting diodes (LEDs) provides a new communication medium to overcome the shortage of radio spectrum, and allows reuse of LED lighting infrastructures. Orthogonal frequency-division multiplexing (OFDM) was introduced to VLC for its merits in mitigating the fading effects resulting from delay spread, and in avoiding low-frequency ambient interference. Noise and clipping are two major factors that degrade the performance of OFDM in VLC. A larger signal easily overcomes noise, but experiences impairment by clipping. Therefore, degradation due to clipping has a trade-off relationship with that due to noise, depending on the signal amplitude of OFDM. In this paper, the optimal signal amplitude in the trade-off is obtained by simulation when the dimming and LED intensity are given. The former indicates a user's requirement for lighting, and the latter represents the channel quality. The required LED intensity-to-noise ratio, as the channel quality that guarantees dimming as well as an adequate bit-error rate (BER), is also discussed.

키워드

참고문헌

  1. E. F. Schubert and J. K. Kim, "Solid-state light sources getting smart," Science 308, 1274-1278 (2005). https://doi.org/10.1126/science.1108712
  2. T. Komine and M. Nakagawa, "Fundamental analysis for visible-light communication system using LED lights," IEEE Trans. Consum. Electron. 50, 100-107 (2004). https://doi.org/10.1109/TCE.2004.1277847
  3. H. Elgala, R. Mesleh, and H. Haas, "Indoor optical wireless communication: Potential and state-of-the-art," IEEE Commun. Mag. 49, 56-62 (2011).
  4. IEEE Standard for Local and Metropolitan Area Networks-Part 15.7: Short-Range Wireless Optical Communication Using Visible Light, IEEE Standard 802.15.7-2011, Sep. (2011).
  5. H. L. Minh, D. O'Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, "100-Mb/s NRZ visible light communications using a postequalized white LED," IEEE Photon. Technol. Lett. 21, 1063-1065 (2009). https://doi.org/10.1109/LPT.2009.2022413
  6. H. L. Minh, D. O'Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, "High-speed visible light communications using multiple-resonant equalization," IEEE Photon. Technol. Lett. 20, 1243-1245 (2008). https://doi.org/10.1109/LPT.2008.926030
  7. T. Komine, J. H. Lee, S. Haruyama, and M. Nakagawa, "Adaptive equalization system for visible light wireless communication utilizing multiple white LED lighting equipment," IEEE Trans. Wireless Commun. 8, 2892-2900 (2009). https://doi.org/10.1109/TWC.2009.060258
  8. F.-M. Wu, C.-T. Lin, C.-C. Wei, C.-W. Chen, H.-T. Huang, and C.-H. Ho, "1.1-Gb/s wite-LED-based visible light communication employing carrier-less amplitude and phase modulation," IEEE Photon. Technol. Lett. 24, 1730-1732 (2012). https://doi.org/10.1109/LPT.2012.2210540
  9. K. Lee, H. Park, and J. R. Barry, "Indoor channel characteristics for visible light communications," IEEE Commun. Lett. 15, 217-219 (2011). https://doi.org/10.1109/LCOMM.2011.010411.101945
  10. L. Zeng, D. C. O'Brien, H. L. Minh, G. E. Faulkner, K. Lee, D. Jung, Y. Oh, and E. T. Won, "High data rate multiple input multiple output (MIMO) optical wireless communications using white LED lighting," IEEE J. Sel. Areas Commun. 27, 1654-1662 (2009). https://doi.org/10.1109/JSAC.2009.091215
  11. K. D. Dambul, D. C. O'Brien, and G. Faulkner, "Indoor optical wireless MIMO system with an imaging receiver," IEEE Photon. Technol. Lett. 23, 97-99 (2011). https://doi.org/10.1109/LPT.2010.2091627
  12. H. Elgala, R. Mesleh, and H. Haas, "Indoor broadcasting via white LEDs and OFDM," IEEE Trans. Consum. Electron. 55, 1127-1134 (2009). https://doi.org/10.1109/TCE.2009.5277966
  13. J. Vucic, C. Kottke, S. Nerreter, A. Buttner, K.-D. Langer, and J. W. Walewski, "White light wireless transmission at 200+ Mb/s net data rate by use of discrete-multitone modulation," IEEE Photon. Technol. Lett. 21, 1511-1513 (2009). https://doi.org/10.1109/LPT.2009.2028696
  14. I. Neokosmidis, T. Kamalakis, J. W. Walewski, B. Inan, and T. Sphicopoulos, "Impact of nonlinear LED transfer function on discrete multitone modulation: Analytical approach," J. Lightwave Technol. 27, 4970-4978 (2009). https://doi.org/10.1109/JLT.2009.2028903
  15. P. A. Haigh, Z. Ghassemlooy, and I. Papakonstantinou, "1.4-Mb/s white organic LED transmission system using discrete multitone modulation," IEEE Photon. Technol. Lett. 25, 615-618 (2013). https://doi.org/10.1109/LPT.2013.2244879
  16. R. Mesleh, H. Elgala, and H. Haas, "LED nonlinearity mitigation techniques in optical wireless OFDM communication systems," IEEE/OSA J. Opt. Commun. Netw. 4, 865-875 (2012). https://doi.org/10.1364/JOCN.4.000865
  17. Y. Ha and W. Chung, "A feedforward partial phase noise mitigation in the time-domain using cyclic prefix for CO-OFDM systems," J. Opt. Soc. Korea 17, 467-470 (2013). https://doi.org/10.3807/JOSK.2013.17.6.467
  18. A. H. Azhar, T.-A. Tran, and D. O'Brien, "A Gigabit/s indoor wireless transmission using MIMO-OFDM visible-light communications," IEEE Photon. Technol. Lett. 25, 171-174 (2013). https://doi.org/10.1109/LPT.2012.2231857
  19. G. Ntogari, T. Kamalakis, J. W. Walewski, and T. Sphicopoulos, "Combining illumination dimming based on pulse-width modulation with visible-light communications based on discrete multitone," IEEE/OSA J. Opt. Commun. Netw. 3, 56-65 (2011). https://doi.org/10.1364/JOCN.3.000056
  20. W. O. Popoola, E. Poves, and H. Haas, "Error performance of generalized space shift keying for indoor visible light communications," IEEE Trans. Commun. 61, 1968-1976 (2013). https://doi.org/10.1109/TCOMM.2013.022713.120501
  21. Z. Wang, W.-D. Zhong, C. Yu, J. Chen, C. P. S. Francois, and W. Chen, "Performance of dimming control scheme in visible light communication system," Opt. Express 20, 18861-18868 (2012). https://doi.org/10.1364/OE.20.018861
  22. E. Cho, J.-H. Choi, C. Park, M. Kang, S. Shin, Z. Ghassemlooy, and C. G. Lee, "NRZ-OOK signaling with LED dimming for visible light communication link," in Proc. 16th Eur. Conf. Netw. Opt. Commun. (Newcastle-Upon-Tyne, UK, Jul. 2011), pp. 32-35.
  23. H.-J. Jang, J.-H. Choi, Z. Ghassemlooy, and C. G. Lee, "PWM-based PPM format for dimming control in visible light communication system," in Proc. 8th Int. Symp. Commun. Syst., Netw. Digital Signal Process (Poznan, Poland, Jul. 2012), pp. 1-5.
  24. J. Grubor, S. Randel, K.-D. Langer, and J. W. Walewski, "Broadband information broadcasting using LED-based interior lighting," J. Lightwave Technol. 26, 3883-3892 (2008). https://doi.org/10.1109/JLT.2008.928525
  25. B. Bai, Z. Xu, and Y. Fan, "Joint LED dimming and high capacity visible light communication by overlapping PPM," in Proc. 19th Annu. Wireless Opt. Commun. Conf. (Shanghai, China, May 2010), pp. 1-5.
  26. S. Rajagopal, R. D. Roberts, and S.-K. Lim, "IEEE 802.15.7 visible light communication: Modulation schemes and dimming support," IEEE Commun. Mag. 50, 72-82 (2012).
  27. J.-H. Yoo and S.-Y. Jung, "Modeling and analysis of variable PPM for visible light communications," EURASIP J. Wireless Commun. Netw. 2013, 134 (2013). https://doi.org/10.1186/1687-1499-2013-134
  28. M. Anand and P. Mishra, "A novel modulation scheme for visible light communication," in Proc. Annu. IEEE India Conf. (Kolkata, India, Dec. 2010), pp. 1-3.
  29. H.-D. Moon and S.-Y. Jung, "Multi-coded variable PPM for high data rate visible light communications," J. Opt. Soc. Korea 16, 107-114 (2012). https://doi.org/10.3807/JOSK.2012.16.2.107
  30. K. Lee and H. Park, "Modulations for visible light communications with dimming control," IEEE Photon. Technol. Lett. 23, 1136-1138 (2011). https://doi.org/10.1109/LPT.2011.2157676
  31. J. K. Kwon, "Inverse source coding for dimming in visible light communications using NRZ-OOK on reliable links," IEEE Photon. Technol. Lett. 22, 1455-1457 (2010). https://doi.org/10.1109/LPT.2010.2062498
  32. K.-I. Ahn and J. K. Kwon, "Capacity analysis of M-PAM inverse source coding in visible light communications," J. Lightwave Technol. 30, 1399-1404 (2012). https://doi.org/10.1109/JLT.2012.2185780
  33. A. B. Siddique and M. Tahir, "Joint brightness control and data transmission for visible light communication systems based on white LEDs," in Proc. IEEE Consum. Commun. Network. Conf. (Las Vegas, USA, Jan. 2011), pp. 1026-1030.
  34. J. Kim, K. Lee, and H. Park, "Power efficient visible light communication systems under dimming constraint," in Proc. 23rd IEEE Int. Symp. Pers. Indoor Mobile Radio Commun. (Sydney, Australia, Sep. 2012), pp. 1968-1973.
  35. P. Das, B.-Y. Kim, Y. Park, and K.-D. Kim, "A new color space based constellation diagram and modulation scheme for color independent VLC," Adv. Electr. Comput. Eng. 12, 11-18 (2012). https://doi.org/10.4316/aece.2012.04002
  36. B. Bai, Q. He, Z. Xu, and Y. Fan, "The color shift key modulation with non-uniform signaling for visible light communication," in Proc. 1st IEEE Int. Conf. Commun. (Bejing, China, Aug. 2012), pp. 37-42.
  37. K.-I. Ahn and J. K. Kwon, "Color intensity modulation for multicolored visible light communications," IEEE Photon. Technol. Lett. 24, 2254-2257 (2012). https://doi.org/10.1109/LPT.2012.2226570
  38. Y. Suh, C.-H. Ahn, and J. K. Kwon, "Dual-codeword allocation scheme for dimmable visible light communications," IEEE Photon. Technol. Lett. 25, 1274-1277 (2013). https://doi.org/10.1109/LPT.2013.2264281
  39. S. Kim and S.-Y. Jung, "Novel FEC coding scheme for dimmable visible light communication based on the modified Reed-Muller codes," IEEE Photon. Technol. Lett. 23, 1514-1516 (2011). https://doi.org/10.1109/LPT.2011.2163625
  40. S. Kim and S.-Y. Jung, "Modified RM coding scheme made from the bent function for dimmable visible light communications," IEEE Photon. Technol. Lett. 25, 11-13 (2013). https://doi.org/10.1109/LPT.2012.2226210
  41. S. H. Lee and J. K. Kwon, "Turbo code-based error correction scheme for dimmable visible light communication systems," IEEE Photon. Technol. Lett. 24, 1463-1465 (2012). https://doi.org/10.1109/LPT.2012.2199104
  42. S. H. Lee, K.-I. Ahn, and J. K. Kwon, "Multilevel transmission in dimmable visible light communication systems," J. Lightwave Technol. 31, 3267-3276 (2013). https://doi.org/10.1109/JLT.2013.2281209
  43. S. H. Lee and J. K. Kwon, "Distributed dimming control for LED lighting," Opt. Express 21, A917-A932 (2013). https://doi.org/10.1364/OE.21.00A917
  44. T. Ohtsuki, "Multiple-subcarrier modulation in optical wireless communications," IEEE Commun. Mag. 41, 74-79 (2003).
  45. J. Armstrong and A. J. Lowery, "Power efficient optical OFDM," Electron. Lett. 42, 370-372 (2006). https://doi.org/10.1049/el:20063636
  46. H. Elgala, R. Mesleh, and H. Haas, "An LED model for intensity-modulated optical communication systems," IEEE Photon. Technol. Lett. 22, 835-837 (2010). https://doi.org/10.1109/LPT.2010.2046157

피인용 문헌

  1. Efficient Cross-Room Switch Mechanism for Indoor Room-Division-Multiplexing Based Visible Light Communication Network vol.19, pp.4, 2015, https://doi.org/10.3807/JOSK.2015.19.4.351
  2. Bandwidth Allocation Under Multi-Level Service Guarantees of Downlink in the VLC-OFDM System vol.20, pp.6, 2016, https://doi.org/10.3807/JOSK.2016.20.6.704