Browse > Article
http://dx.doi.org/10.3807/JOSK.2014.18.5.459

Optimal Signal Amplitude of Orthogonal Frequency-Division Multiplexing Systems in Dimmable Visible Light Communications  

Yun, Kyungsu (Department of Electronic Engineering, Yeungnam University)
Lee, Changho (Samsung Electronics)
Ahn, Kang-Il (Mando Global R&D Center)
Lee, Rimhwan (Samsung Thales)
Jang, Ja-Soon (Department of Electronic Engineering, Yeungnam University)
Kwon, Jae Kyun (Department of Electronic Engineering, Yeungnam University)
Publication Information
Journal of the Optical Society of Korea / v.18, no.5, 2014 , pp. 459-465 More about this Journal
Abstract
Visible light communications (VLC) using the intensity modulation of light-emitting diodes (LEDs) provides a new communication medium to overcome the shortage of radio spectrum, and allows reuse of LED lighting infrastructures. Orthogonal frequency-division multiplexing (OFDM) was introduced to VLC for its merits in mitigating the fading effects resulting from delay spread, and in avoiding low-frequency ambient interference. Noise and clipping are two major factors that degrade the performance of OFDM in VLC. A larger signal easily overcomes noise, but experiences impairment by clipping. Therefore, degradation due to clipping has a trade-off relationship with that due to noise, depending on the signal amplitude of OFDM. In this paper, the optimal signal amplitude in the trade-off is obtained by simulation when the dimming and LED intensity are given. The former indicates a user's requirement for lighting, and the latter represents the channel quality. The required LED intensity-to-noise ratio, as the channel quality that guarantees dimming as well as an adequate bit-error rate (BER), is also discussed.
Keywords
Visible light communication; OFDM; Dimming; Clipping;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 IEEE Standard for Local and Metropolitan Area Networks-Part 15.7: Short-Range Wireless Optical Communication Using Visible Light, IEEE Standard 802.15.7-2011, Sep. (2011).
2 E. F. Schubert and J. K. Kim, "Solid-state light sources getting smart," Science 308, 1274-1278 (2005).   DOI   ScienceOn
3 T. Komine and M. Nakagawa, "Fundamental analysis for visible-light communication system using LED lights," IEEE Trans. Consum. Electron. 50, 100-107 (2004).   DOI   ScienceOn
4 H. Elgala, R. Mesleh, and H. Haas, "Indoor optical wireless communication: Potential and state-of-the-art," IEEE Commun. Mag. 49, 56-62 (2011).
5 F.-M. Wu, C.-T. Lin, C.-C. Wei, C.-W. Chen, H.-T. Huang, and C.-H. Ho, "1.1-Gb/s wite-LED-based visible light communication employing carrier-less amplitude and phase modulation," IEEE Photon. Technol. Lett. 24, 1730-1732 (2012).   DOI   ScienceOn
6 H. L. Minh, D. O'Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, "100-Mb/s NRZ visible light communications using a postequalized white LED," IEEE Photon. Technol. Lett. 21, 1063-1065 (2009).   DOI   ScienceOn
7 H. L. Minh, D. O'Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, "High-speed visible light communications using multiple-resonant equalization," IEEE Photon. Technol. Lett. 20, 1243-1245 (2008).   DOI   ScienceOn
8 T. Komine, J. H. Lee, S. Haruyama, and M. Nakagawa, "Adaptive equalization system for visible light wireless communication utilizing multiple white LED lighting equipment," IEEE Trans. Wireless Commun. 8, 2892-2900 (2009).   DOI   ScienceOn
9 K. Lee, H. Park, and J. R. Barry, "Indoor channel characteristics for visible light communications," IEEE Commun. Lett. 15, 217-219 (2011).   DOI   ScienceOn
10 L. Zeng, D. C. O'Brien, H. L. Minh, G. E. Faulkner, K. Lee, D. Jung, Y. Oh, and E. T. Won, "High data rate multiple input multiple output (MIMO) optical wireless communications using white LED lighting," IEEE J. Sel. Areas Commun. 27, 1654-1662 (2009).   DOI   ScienceOn
11 K. D. Dambul, D. C. O'Brien, and G. Faulkner, "Indoor optical wireless MIMO system with an imaging receiver," IEEE Photon. Technol. Lett. 23, 97-99 (2011).   DOI   ScienceOn
12 H. Elgala, R. Mesleh, and H. Haas, "Indoor broadcasting via white LEDs and OFDM," IEEE Trans. Consum. Electron. 55, 1127-1134 (2009).   DOI   ScienceOn
13 J. Vucic, C. Kottke, S. Nerreter, A. Buttner, K.-D. Langer, and J. W. Walewski, "White light wireless transmission at 200+ Mb/s net data rate by use of discrete-multitone modulation," IEEE Photon. Technol. Lett. 21, 1511-1513 (2009).   DOI   ScienceOn
14 R. Mesleh, H. Elgala, and H. Haas, "LED nonlinearity mitigation techniques in optical wireless OFDM communication systems," IEEE/OSA J. Opt. Commun. Netw. 4, 865-875 (2012).   DOI   ScienceOn
15 Y. Ha and W. Chung, "A feedforward partial phase noise mitigation in the time-domain using cyclic prefix for CO-OFDM systems," J. Opt. Soc. Korea 17, 467-470 (2013).   과학기술학회마을   DOI   ScienceOn
16 I. Neokosmidis, T. Kamalakis, J. W. Walewski, B. Inan, and T. Sphicopoulos, "Impact of nonlinear LED transfer function on discrete multitone modulation: Analytical approach," J. Lightwave Technol. 27, 4970-4978 (2009).   DOI   ScienceOn
17 P. A. Haigh, Z. Ghassemlooy, and I. Papakonstantinou, "1.4-Mb/s white organic LED transmission system using discrete multitone modulation," IEEE Photon. Technol. Lett. 25, 615-618 (2013).   DOI   ScienceOn
18 A. H. Azhar, T.-A. Tran, and D. O'Brien, "A Gigabit/s indoor wireless transmission using MIMO-OFDM visible-light communications," IEEE Photon. Technol. Lett. 25, 171-174 (2013).   DOI   ScienceOn
19 G. Ntogari, T. Kamalakis, J. W. Walewski, and T. Sphicopoulos, "Combining illumination dimming based on pulse-width modulation with visible-light communications based on discrete multitone," IEEE/OSA J. Opt. Commun. Netw. 3, 56-65 (2011).   DOI   ScienceOn
20 W. O. Popoola, E. Poves, and H. Haas, "Error performance of generalized space shift keying for indoor visible light communications," IEEE Trans. Commun. 61, 1968-1976 (2013).   DOI   ScienceOn
21 Z. Wang, W.-D. Zhong, C. Yu, J. Chen, C. P. S. Francois, and W. Chen, "Performance of dimming control scheme in visible light communication system," Opt. Express 20, 18861-18868 (2012).   DOI
22 J. Grubor, S. Randel, K.-D. Langer, and J. W. Walewski, "Broadband information broadcasting using LED-based interior lighting," J. Lightwave Technol. 26, 3883-3892 (2008).   DOI   ScienceOn
23 E. Cho, J.-H. Choi, C. Park, M. Kang, S. Shin, Z. Ghassemlooy, and C. G. Lee, "NRZ-OOK signaling with LED dimming for visible light communication link," in Proc. 16th Eur. Conf. Netw. Opt. Commun. (Newcastle-Upon-Tyne, UK, Jul. 2011), pp. 32-35.
24 S. Rajagopal, R. D. Roberts, and S.-K. Lim, "IEEE 802.15.7 visible light communication: Modulation schemes and dimming support," IEEE Commun. Mag. 50, 72-82 (2012).
25 H.-J. Jang, J.-H. Choi, Z. Ghassemlooy, and C. G. Lee, "PWM-based PPM format for dimming control in visible light communication system," in Proc. 8th Int. Symp. Commun. Syst., Netw. Digital Signal Process (Poznan, Poland, Jul. 2012), pp. 1-5.
26 B. Bai, Z. Xu, and Y. Fan, "Joint LED dimming and high capacity visible light communication by overlapping PPM," in Proc. 19th Annu. Wireless Opt. Commun. Conf. (Shanghai, China, May 2010), pp. 1-5.
27 J.-H. Yoo and S.-Y. Jung, "Modeling and analysis of variable PPM for visible light communications," EURASIP J. Wireless Commun. Netw. 2013, 134 (2013).   DOI   ScienceOn
28 H.-D. Moon and S.-Y. Jung, "Multi-coded variable PPM for high data rate visible light communications," J. Opt. Soc. Korea 16, 107-114 (2012).   과학기술학회마을   DOI   ScienceOn
29 K. Lee and H. Park, "Modulations for visible light communications with dimming control," IEEE Photon. Technol. Lett. 23, 1136-1138 (2011).   DOI   ScienceOn
30 J. K. Kwon, "Inverse source coding for dimming in visible light communications using NRZ-OOK on reliable links," IEEE Photon. Technol. Lett. 22, 1455-1457 (2010).   DOI   ScienceOn
31 J. Kim, K. Lee, and H. Park, "Power efficient visible light communication systems under dimming constraint," in Proc. 23rd IEEE Int. Symp. Pers. Indoor Mobile Radio Commun. (Sydney, Australia, Sep. 2012), pp. 1968-1973.
32 K.-I. Ahn and J. K. Kwon, "Capacity analysis of M-PAM inverse source coding in visible light communications," J. Lightwave Technol. 30, 1399-1404 (2012).   DOI   ScienceOn
33 A. B. Siddique and M. Tahir, "Joint brightness control and data transmission for visible light communication systems based on white LEDs," in Proc. IEEE Consum. Commun. Network. Conf. (Las Vegas, USA, Jan. 2011), pp. 1026-1030.
34 K.-I. Ahn and J. K. Kwon, "Color intensity modulation for multicolored visible light communications," IEEE Photon. Technol. Lett. 24, 2254-2257 (2012).   DOI   ScienceOn
35 P. Das, B.-Y. Kim, Y. Park, and K.-D. Kim, "A new color space based constellation diagram and modulation scheme for color independent VLC," Adv. Electr. Comput. Eng. 12, 11-18 (2012).   DOI
36 B. Bai, Q. He, Z. Xu, and Y. Fan, "The color shift key modulation with non-uniform signaling for visible light communication," in Proc. 1st IEEE Int. Conf. Commun. (Bejing, China, Aug. 2012), pp. 37-42.
37 Y. Suh, C.-H. Ahn, and J. K. Kwon, "Dual-codeword allocation scheme for dimmable visible light communications," IEEE Photon. Technol. Lett. 25, 1274-1277 (2013).   DOI   ScienceOn
38 S. Kim and S.-Y. Jung, "Novel FEC coding scheme for dimmable visible light communication based on the modified Reed-Muller codes," IEEE Photon. Technol. Lett. 23, 1514-1516 (2011).   DOI   ScienceOn
39 S. H. Lee and J. K. Kwon, "Turbo code-based error correction scheme for dimmable visible light communication systems," IEEE Photon. Technol. Lett. 24, 1463-1465 (2012).   DOI   ScienceOn
40 S. Kim and S.-Y. Jung, "Modified RM coding scheme made from the bent function for dimmable visible light communications," IEEE Photon. Technol. Lett. 25, 11-13 (2013).   DOI   ScienceOn
41 S. H. Lee, K.-I. Ahn, and J. K. Kwon, "Multilevel transmission in dimmable visible light communication systems," J. Lightwave Technol. 31, 3267-3276 (2013).   DOI   ScienceOn
42 S. H. Lee and J. K. Kwon, "Distributed dimming control for LED lighting," Opt. Express 21, A917-A932 (2013).   DOI
43 T. Ohtsuki, "Multiple-subcarrier modulation in optical wireless communications," IEEE Commun. Mag. 41, 74-79 (2003).
44 J. Armstrong and A. J. Lowery, "Power efficient optical OFDM," Electron. Lett. 42, 370-372 (2006).   DOI   ScienceOn
45 H. Elgala, R. Mesleh, and H. Haas, "An LED model for intensity-modulated optical communication systems," IEEE Photon. Technol. Lett. 22, 835-837 (2010).   DOI   ScienceOn
46 M. Anand and P. Mishra, "A novel modulation scheme for visible light communication," in Proc. Annu. IEEE India Conf. (Kolkata, India, Dec. 2010), pp. 1-3.