DOI QR코드

DOI QR Code

A High Birefringent Polymer Terahertz Waveguide: Suspended Elliptical Core Fiber

  • Wang, Jingli (College of Optoelectronic Engineering, Nanjing University of Posts and Telecommunications) ;
  • Chen, Heming (College of Optoelectronic Engineering, Nanjing University of Posts and Telecommunications) ;
  • Shi, Weihua (College of Optoelectronic Engineering, Nanjing University of Posts and Telecommunications)
  • Received : 2014.06.25
  • Accepted : 2014.08.13
  • Published : 2014.10.25

Abstract

A novel high birefringent polymer terahertz (THz) fiber with a suspended elliptical core is proposed in this paper. The introduction of an elliptical core can enhance asymmetry to realize high mode birefringence, and a large porous outer cladding effectively isolates the core-guided mode from interacting with the surrounding environment. A full-vector finite element method(FEM) is used to analyze the characteristics of the THz fiber. Simulation results show that the suspended elliptical fiber exhibits high mode birefringence on a level of $10^{-2}$ over a wide frequency range, and an extremely large mode birefringence(${\approx}0.06226$) is obtained when ellipticity is 0.2. Moreover, a suspended hollow elliptical core fiber is also discussed for the purpose of lower loss, however high mode birefringence and low relative absorption loss can not coexist in such a kind of fiber.

Keywords

References

  1. J. Choi, S. Y. Ryu, W. S. Kwon, K. S. Kim, and S. Kim, "Compound explosives detection and component analysis via terahertz time-domain spectroscopy," J. Opt. Soc. Korea 17, 454-460 (2013). https://doi.org/10.3807/JOSK.2013.17.5.454
  2. T. Kiwa, K. Sakai, and K. Tsukada, "Stabilization method for signal drifts in terahertz chemical microscopy," Opt. Express 22, 1330-1335 (2014). https://doi.org/10.1364/OE.22.001330
  3. S. Federico, B. Alexander, and V. Borja, "Birefringence measurement in the terahertz range based on double Fourier analysis," Opt. Lett. 39, 809-812 (2014). https://doi.org/10.1364/OL.39.000809
  4. J. M. Dai and X. C. Zhang, "Terahertz wave generation from thin metal films excited by asymmetrical optical fields," Opt. Lett. 39, 777-780 (2014). https://doi.org/10.1364/OL.39.000777
  5. S. Atakaramians, A. V. Shahraam, and M. F. Bernd, "Porous fibers: A novel approach to low loss THz wave-guides," Opt. Express 16, 8845-8854 (2008). https://doi.org/10.1364/OE.16.008845
  6. A. Hassani, A. Dupuis, and M. Skorobogatiy, "Porous polymer fibers for low-loss terahertz guiding," Opt. Express 16, 6340-6351 (2008). https://doi.org/10.1364/OE.16.006340
  7. A. Hassani, A. Dupuis, and M. Skorobogatiy, "Low loss porous terahertz fibers containing multiple subwavelength holes," Appl. Phys. Lett. 92, 071101-1-071101-3 (2008). https://doi.org/10.1063/1.2840164
  8. A. Dupuis, A. Hassani, and M. Skorobogatiy, "Design of porous polymer THz fibers," Proc. SPIE 6892, 51-63 (2008).
  9. L. J. Chen, H. W. Chen, T. F. Kao, J. Y. Lu, and C. K. Sun, "Low-loss subwavelength plastic fiber for terahertz waveguiding," Opt. Lett. 31, 308-310 (2006). https://doi.org/10.1364/OL.31.000308
  10. S. A. Vahid, S. Atakaramians, B. M. Fischer, H. E. Heidepriem, T. M. Monro, and D. Abbott, "Low loss, low dispersion T-ray transmission in microwires," in Proc. of Quanturm Electronics and Laser Science Conference (Baltimore, USA, 2007), paper JWA105.
  11. M. Roze, B. Ung, A. Mazhorova, M. Walther, and M. Skorobogatiy, "Suspended core subwavelength fibers: Towards practical designs for low-loss terahertz guidance," Opt. Express 19, 9127-9138 (2011). https://doi.org/10.1364/OE.19.009127
  12. X. G. Jiang, D. R. Chen, and G. F. Hu, "Suspended hollow core fiber for terahertz wave guiding," Appl. Opt. 52, 770-774 (2013). https://doi.org/10.1364/AO.52.000770
  13. Y. S. Jin, G. J. Kim, and S. G. Jeon, "Terahertz dielectric properties of polymer," J. Korean Phys. Soc. 49, 513-517 (2006).
  14. K. Saitoh and M. Koshiba, "Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: Application to photonic crystal fibers," IEEE J. Quantum Electron. 38, 927-933 (2002). https://doi.org/10.1109/JQE.2002.1017609
  15. A. W. Snyder and J. D. Love, Optical Waveguide Theory (London: Kluwer Academic Publisher, 2000).
  16. A. Shaghik, A. V. Shahraam, E. H. Heike, N. Michael, M. F. Bernd, A. Derek, and M. M. Tanya, "THz porous fibers: Design, fabrication, and experimental characterization," Opt. Express 17, 14053-14062 (2009). https://doi.org/10.1364/OE.17.014053
  17. J. L. Wang, J. Q. Yao, H. M. Chen, K. Zhong, and Z. Y. Li, "Ultrahigh birefringent polymer terahertz fiber based on a near-tie unit," J. Opt. 13, 055402 (5pp) (2011). https://doi.org/10.1088/2040-8978/13/5/055402
  18. N. N. Chen, J. Liang, and L. Y. Ren, "High-birefringence, low-loss porous fiber for single-mode terahertz-wave guidance," Appl. Opt. 52, 5297-5302 (2013). https://doi.org/10.1364/AO.52.005297
  19. Z. Y. Liu, C. Wu, M. L. V. Tse, and H. Y. Tam, "Fabrication, Characterization, and sensing applications of a high-birefringence suspended-core fiber," J. Lightwave Technol. 32, 2113-2122 (2104).

Cited by

  1. Highly Birefringent Terahertz Waveguide Formed With Dual-Subwavelength Polymer Wires vol.35, pp.21, 2017, https://doi.org/10.1109/JLT.2017.2752899
  2. A Low-Loss Terahertz Fiber With Crossed Rectangular Shaped Dielectric Strips vol.5, pp.5, 2015, https://doi.org/10.1109/TTHZ.2015.2449241
  3. Highly Birefringent Single-Mode Suspended-Core Fiber in Terahertz Regime vol.36, pp.16, 2018, https://doi.org/10.1109/JLT.2018.2834458
  4. Dispersion flattened extremely high-birefringent kagome lattice elliptic core photonic crystal fiber in THz regime vol.51, pp.1, 2019, https://doi.org/10.1007/s11082-019-1744-9