DOI QR코드

DOI QR Code

Contour-based Procedural Modeling of Leaf Venation Patterns

컨투어기반 잎맥 패턴의 절차적 모델링

  • Kim, Jin-Mo (Dept. of Software, Catholic University of Pusan)
  • 김진모 (부산가톨릭대학교 소프트웨어학과)
  • Received : 2014.09.11
  • Accepted : 2014.10.14
  • Published : 2014.10.20

Abstract

This study proposes an efficient method to model various and diverse leaves required to express digital plants such as flowers and trees in virtual landscape easily and intuitively. The proposed procedural method divides a leaf mainly into a blade and vein thereby detecting contours from binary images that correspond to blades and generating leaves by modeling leaf veins procedurally based on the detected contours. First of all, a complicated leaf vein structure is divided into main veins, lateral veins, and tertiary vein while all veins grow procedurally directing from start auxin to destination auxin. Here, to calculate destination auxin required for growth automatically, approximated contours from binary images that correspond to blades are found thereby calculating candidate destination auxin. Finally, natural digital leaves are generated by applying a color combination method. Through the proposed method, natural and various leaves can be generated and whether the proposed method is efficient or not is verified through the experiment.

본 연구는 가상 조경을 구성하는 꽃, 나무 등의 디지털 식물 표현에 필요한 다수의 다양한 잎들을 쉽고 직관적으로 모델링하기 위한 효율적인 방법을 제안한다. 제안하는 절차적 방법은 잎을 크게 잎몸과 잎맥으로 구분하여 잎몸에 해당하는 이진영상으로부터 컨투어를 검출하고 이를 기반으로 잎맥을 절차적으로 모델링함으로써 잎을 생성한다. 우선 복잡한 잎맥 구조를 주잎맥, 곁 잎맥 그리고 3차 잎맥으로 나누며 모든 잎맥은 시작 옥신(auxin)으로부터 목적 옥신으로 향하며 절차적으로 성장하는 구조를 갖는다. 이때 성장에 필요한 목적 옥신을 자동으로 계산하기 위해 잎몸에 해당하는 이진영상으로부터 근사화된 컨투어를 찾아 이를 기반으로 후보목적 옥신을 계산한다. 마지막으로 다중 텍스쳐 맵 합성을 적용하여 자연스러운 디지털 잎을 생성한다. 제안한 방법을 통하여 자연스러운 다양한 잎의 생성이 가능하고, 효율적인지 여부를 실험을 통해 증명했다.

Keywords

References

  1. A. Runions, M. Fuhrer, B. Lane, P. Federl, A. G. Rolland-Lagan and P. Prusinkiewicz, "Modeling and visualization of leaf venation patterns", ACM Trans. Graph., Vol. 23, No. 3, pp.702-711, 2005.
  2. X. Wang, L. Li and W. Chai, "Geometric modeling of broad-leaf plants leaf based on B-spline", Mathematical and Computer Modelling, Vol. 58, No. 34, pp.564-572, 2013. https://doi.org/10.1016/j.mcm.2011.10.064
  3. P. Prusinkiewicz, L. Mündermann, R. Karwowski and B. Lane, "The use of positional information in the modeling of plants", In Proc. of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp.289-300, 2001.
  4. F. Boudon, C. Pradal, T. Cokelaer, P. Prusinkiewicz and C. Godin, "L-py: an l-system simulation framework for modeling plant development based on a dynamic language", Frontiers in Plant Science, Vol. 3, No. 76, pp.1-20, 2012.
  5. A. Peyrat, O. Terraz, S. Merillou and E. Galin, "Generating vast varieties of realistic leaves with parametric 2gmap l-systems", Vis. Comput., Vol. 24, No. 7, pp.807-816, 2008. https://doi.org/10.1007/s00371-008-0262-8
  6. S. Hong, B. Simpson and G. V. G. Baranoski, "Interactive venation-based leaf shape modeling", Computer Animation and Virtual Worlds, Vol. 16, No. 3-4, pp.415-427, 2005. https://doi.org/10.1002/cav.88
  7. L. Mundermann, P. MacMurchy, J. Pivovarov and P. Prusinkiewicz. "Modeling lobed leaves". In Computer Graphics International, 2003. pp.60-65, 2003.
  8. T.T. Lin Y.T. Chi and C.F. Chien. "Leaf shape modeling and analysis using geometric descriptors derived from bezier curves". Transactions of the ASABE, Vol. 46, No. 1, pp.175-185, 2003.
  9. W. T. Reeves and R. Blau, "Approximate and probabilistic algorithms for shading and rendering structured particle systems", SIGGRAPH Comput. Graph., Vol. 19, No. 3, pp.313-322, 1985. https://doi.org/10.1145/325165.325250
  10. H. Xiao and X. Chen, "Modeling and simulation of curled dry leaves", Soft Matter, Vol. 7, pp.10794-10802, 2011. https://doi.org/10.1039/c1sm05998j
  11. T. Ijiri, M. Yokoo, S. Kawabata and T. Igarashi, "Surface-based growth simulation for opening flowers", In Proc. of Graphics Interface 2008, pp.227-234, 2008.
  12. S. Jeong, S. Park and C. Kim. "Simulation of morphology changes in drying leaves". Computer Graphics Forum, Vol. 32, No. 1, pp.204-215, 2013. https://doi.org/10.1111/cgf.12009
  13. J. Kim, D. Kim and H. Cho, "Tree Growth Model Design for Realistic Game Landscape Production", Journal of Korea Game Society, Vol. 13, No. 2, pp.49-58, 2012. https://doi.org/10.7583/JKGS.2013.13.2.49
  14. Jung-Kyu Joo, "Model of Game Environment Design for Adanced Game Background Graphic and Map Design", Journal of Korea Game Society, Vol. 4, No. 3, pp.77-84, 2004.
  15. J. Kim, D. Kim and H. Cho. "Procedural modeling of trees based on convolution sums of divisor functions for real-time virtual ecosystems". Computer Animation and Virtual Worlds, Vol. 24, No. 3-4, pp.237-246, 2013. https://doi.org/10.1002/cav.1506
  16. W. Jin, W. Gu and Z. Zhang. "An improved method for modeling of leaf venation patterns". In Image and Signal Processing, 2009. CISP '09. 2nd International Congress on, pp.1-5, 2009.
  17. J. Kim and H. Cho, "Efficient modeling of numerous trees by introducing growth volume for real-time virtual ecosystems", Computer Animation and Virtual Worlds, Vol. 23, No. 3-4, pp.155-165, 2012. https://doi.org/10.1002/cav.1438

Cited by

  1. Modeling of Various Digital Leaves Using Feature-based Image Warping vol.16, pp.2, 2015, https://doi.org/10.9728/dcs.2015.16.2.235
  2. Procedural modeling and visualization of multiple leaves vol.23, pp.4, 2017, https://doi.org/10.1007/s00530-016-0503-z