Nitric Oxide Inhibitory Constituents from Fruits of Opuntia humifusa

  • Kang, You-Jeng (World Class University, Department of Nanobiomedicine, Dankook University) ;
  • Kim, Hae-Young (World Class University, Department of Nanobiomedicine, Dankook University) ;
  • Lee, Chul (Eco-friendly Material Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Park, So-Young (World Class University, Department of Nanobiomedicine, Dankook University)
  • Received : 2014.03.21
  • Accepted : 2014.07.15
  • Published : 2014.09.30

Abstract

Opuntia humifusa, also called as Cheonnyuncho, is a cactus widely cultivated in southern regions of Korea. It has been known to have diverse biological activities, but most of the studies were performed with the MeOH extracts or solvent-partitioned fractions. Furthermore, the efforts to identify the responsible compounds for the biological activities are very limited. In this study, we tested the inhibitory effect of extracts and solvent-partitioned fractions of O. humifusa against LPS-induced nitric oxide (NO) production in Raw264.7 cells. The butanol fractions of O. humifusa efficiently inhibited the production of NO in Raw264.7 cells, but it was not due to the reduction of cell viability. Bioassay-guided isolation of butanol fractions of O. humifusa allowed the isolation of three flavonoids isorhamnetin 3-O-${\beta}$-$\small{D}$-galactosyl-4'-O-${\beta}$-$\small{D}$-glucoside (1), isorhamnetin 3,4'-di-O-${\beta}$-$\small{D}$-glucoside (2) and isorhamnetin 3-O-${\beta}$-$\small{D}$-(6-O-${\alpha}$-$\small{L}$-rhamnosyl)glucoside (3), and one lignan syringaresinol O-${\beta}$-$\small{D}$-glucopyranoside (4). Among them, isorhamnetin 3-O-${\beta}$-$\small{D}$-galactosyl-4'-O-${\beta}$-$\small{D}$-glucoside (1) and isorhamnetin 3,4'-di-O-${\beta}$-$\small{D}$-glucoside (2) exhibited the moderate inhibitory effects against LPS-induced NO production. This is the first time to report anti-inflammatory effects of these compounds.

Keywords

References

  1. Acuna, U. M.; Atha, D. E.; Ma, J.; Nee, M. H.; Kennelly, E. J. Phytother. Res. 2002, 16, 63.
  2. Lee, J. C.; Kim, H. R.; Kim, J.; Jang, Y. S. J. Agric. Food Chem. 2002, 50, 6490. https://doi.org/10.1021/jf020388c
  3. Kaur, M.; Kaur, A.; Sharma, R. J. Appl. Pharmaceutical Sci. 2012, 02, 15. https://doi.org/10.7324/JAPS.2012.2524
  4. Goldstein, G.; Nobel, P. S. Plant Physiol. 1994, 104, 675. https://doi.org/10.1104/pp.104.2.675
  5. Cho, J. Y.; Park, S. C.; Kim, T. W.; Kim, K. S.; Song, J. C.; Kim, S. K.; Lee, H. M.; Sung, H. J.; Park, H. J.; Song, Y. B.; Yoo, E. S.; Lee, C. H.; Rhee, M. H. J. Pharm. Pharmacol. 2006, 58, 113. https://doi.org/10.1211/jpp.58.1.0014
  6. Lee, K .S.; Kim, M. G.; Lee, K. Y. J. Korean Soc. Food Sci. Nutr. 2004, 33, 1268. https://doi.org/10.3746/jkfn.2004.33.8.1268
  7. Hahm, S. W.; Park, J.; Son, Y. S. Plant Foods Hum. Nutr. 2010, 65, 247. https://doi.org/10.1007/s11130-010-0188-y
  8. Park, M. K.; Lee, Y. J.; Kang, E. S. J. Korean Food Sci. Nutr. 2005, 34, 1525. https://doi.org/10.3746/jkfn.2005.34.10.1525
  9. Park, S. H.; Kim, H.; Rhyu, D. Y. J. Appl. Biol. Chem. 2007, 50, 254.
  10. Kobayashi, H.; Karasawa, H.; Miyase, T.; Fukushima, S. Chem. Pharm. Bull. 1985, 33, 1452. https://doi.org/10.1248/cpb.33.1452
  11. Lee, K. S.; Lee, K. Y. J. Korean Sco. Food Sci. Nutr. 2010, 39, 1132. https://doi.org/10.3746/jkfn.2010.39.8.1132
  12. Jung, B. M.; Shin, M. Y.; Kim, H. R. J. Korean Sco. Food Sci. Nutr. 2012, 41, 20. https://doi.org/10.3746/jkfn.2012.41.1.020
  13. Hahm, S. W.; Park, J.; Son, Y. S. Nutr. Res. 2011, 31, 479. https://doi.org/10.1016/j.nutres.2011.05.002
  14. Yang, J. H.; Kim, S. C.; Shin, B. Y.; Jin, S. H.; Jo, M. J.; Jegal, K. H.; Kim, Y. W.; Lee, J. R.; Ku, S. K.; Cho, I. J.; Ki, S. H. Food Chem. Toxicol. 2013, 59, 362. https://doi.org/10.1016/j.fct.2013.05.049
  15. Kim, T. H.; Ku, S. K.; Bae, J. S. J. Cell Biochem. 2013, 114, 336. https://doi.org/10.1002/jcb.24361