Ethylacetate Fraction of Rubus coreanum Causes Vascular Relaxation and Hypotensive Action

  • Hong, Soon-Pyo (Department of Internal Medicine (Cardiology), College of Medicine, Chosun University) ;
  • Choi, Mee-Sung (Department of Leisure & Sport, College of Public Health & Welfare, Dongshin University) ;
  • Lim, Dong-Yoon (Department of Pharmacology, College of Medicine, Chosun University)
  • Received : 2014.05.20
  • Accepted : 2014.07.16
  • Published : 2014.09.30

Abstract

The present study was designed to investigate whether ethylacetate (EtOAc) fraction extracted from Rubus coreanum affect the contractility of the isolated thoracic aortic strips and blood pressure of normotensive rats. The EtOAc fraction ($400{\mu}g/mL$) significantly depressed both phenylephrine (PE, $10{\mu}M$)- and high $K^+$ (56 mM)-induced contractile responses of the isolated thoracic aortic strips in a concentration-dependent fashion. In the simultaneous presence of L-NAME (an inhibitor of NO synthase, $300{\mu}M$) and EtOAc ($400{\mu}g/mL$), both PE- and high $K^+$-induced contractile responses were recovered to the corresponding control level in comparison with inhibition of EtOAc-treatment alone. Moreover, in the simultaneous presence of EtOAc after pretreatment with 0.4% CHAPS, both PE- and high $K^+$-induced contractile responses were recovered to the corresponding control level compared to the inhibitory response of EtOAc-treatment alone. Also, in anesthetized rats, EtOAc fraction (0.3~3.0 mg/kg) injected into a femoral vein dose-dependently produced depressor responses. This hypotensive action of EtOAc fraction was greatly inhibited after treatment with phentolamine (1 mg/kg), chlorisondamine (1 mg/kg), L-NAME (3 mg/kg/30 min) or sodium nitroprusside ($30{\mu}g/kg/30 min$). Intravenous infusion of EtOAc fraction (1.0~10.0 mg/kg/30 min) markedly inhibited norepinehrine-induced pressor responses. Taken together, these results demostrate that EtOAc causes vascular relaxation in the isolated rat thoracic aortic strips as well as hypotensive action in anesthetized rats. These vasorelaxation and hypotension of EtOAc seem to be mediated at least by the increased NO production through the activation of NO synthase of vascular endothelium, and the inhibitory adrenergic modulation.

Keywords

References

  1. Lee, J. W.; Do, J. H. Korean J. Food & Nutr. 2000, 13, 453-459.
  2. Cho, Y. J. Korean J. Food & Nutr. 2005, 34, 790-796. https://doi.org/10.3746/jkfn.2005.34.6.790
  3. Kee, Y. W.; Lim, D. Y. Arch. Pharm. Res. 2007, 30, 1240-1251. https://doi.org/10.1007/BF02980265
  4. Yu, B. S.; Ko, W. S.; Lim, D. Y. Biomolecules & Therapeutics 2009, 16, 147-160.
  5. Fitzpatrick, D. F.; Hirschfield, S. L.; Coffey, R. G. Am. J. Physiol. 1993, 265, H77-78.
  6. Andriambeloson, E.; Stoclet, J. C.; Andriantsitohaina, R. J. Cardiovasc. Pharmacol. 1999, 33, 248-254. https://doi.org/10.1097/00005344-199902000-00011
  7. Bouloumie, A.; Bauersachs, J.; Linz, W. Hypertension 1997, 30, 934-941. https://doi.org/10.1161/01.HYP.30.4.934
  8. Moore, P.; Kal-Swayeh, O. A.; Chong, N. W.; Evans, R. A.; Gibson, A. Br. J. Pharmacol. 1990, 99, 408-412. https://doi.org/10.1111/j.1476-5381.1990.tb14717.x
  9. Tallarida, R. J.; Murray, R. B. Manual of pharmacologic calculation with computer programs. 2nd Ed; Speringer-Verlag; New York, 1987.
  10. Lim, H. J.; Min, S. Y.; Woo, E. R.; Lim, D. Y. Biomolecules &Therapeutics 2011, 19, 477-486. https://doi.org/10.4062/biomolther.2011.19.4.477
  11. Wada, A.; Takara, H.; Izumi, F.; Kobayashi, H.; Yanagihara, N. Neuroscience 1985, 15, 283-292. https://doi.org/10.1016/0306-4522(85)90135-6
  12. Fitzpatrick, D. F.; Fleming, R. C.; Bing, B.; Maggi D. A.; O'Malley, R. J. Agric. Food Chem. 2000, 48, 6384-6390. https://doi.org/10.1021/jf0009347
  13. Zenebe, W.; Pechaoova, O.; Andriantsitohaina, R. Physiol. Res. 2003, 52, 425-432.
  14. Mizutani, K.; Ikeda, K.; Kawai Y.; Yamori, Y. J. Nutr. Sci. Vitaminol (Tokyo). 1999, 45, 95-106. https://doi.org/10.3177/jnsv.45.95
  15. Diebolt, M.; Bucher, B.; Andriantsitohaina, R. Hypertension 2001, 38, 159-165. https://doi.org/10.1161/01.HYP.38.2.159
  16. Bernatova, I.; Pechaoova, O.; Babal, P.; Kysela, S.; Stvrtina, S.; Andriantsitohaina, R. Am. J. Physiol (Heart Circ Physiol). 2002, 282, H942-H948. https://doi.org/10.1152/ajpheart.00724.2001
  17. Ndiaye, M.; Chataigneau, T.; Andriantsitohaina, J. C. S.; Schini-Kerth, V. B. Biochem. Biophys. Res. Commun. 2003, 310, 371-377. https://doi.org/10.1016/j.bbrc.2003.09.028
  18. Corder, R.; Douthwaite, J. A.; Lees, D. M.; Khan, N. Q.; Viseu Dos Santos, A. C.; Wood, E. G.; Carrier, M. J. Nature 2001, 414, 863-864. https://doi.org/10.1038/414863a
  19. Martin, S.; Andriambeloson, E.; Takeda, K.; Andriantsitohaina, R. Br. J. Pharmacol. 2002, 135, 1579-1587. https://doi.org/10.1038/sj.bjp.0704603
  20. de Aetano, G.; Cerletti, C. Nutr. Metab. Cardiovasc. Dis. 2001, 11, 47-50.
  21. Pechanova, O.; Bernatova, I.; Babal, P.; Martinez, M. C.; Kysela, S.; Stvrtina, S.; Andriantsitohaina, R. J. Hypertens. 2004, 22, 1551-1559. https://doi.org/10.1097/01.hjh.0000133734.32125.c7
  22. Sarr, M.; Chataigneau, M.; Martins, S.; Schott, C.; El Bedoui, J.; Oak, M. H.; Muller, B.; Chataigneau, T.; Schini-Kerth, V. B. Cardiovasc. Res. 2006, 71, 794-802. https://doi.org/10.1016/j.cardiores.2006.05.022
  23. Soares de Moura, R.; Costa Viana, F. S.; Souza, M. A. V.; Kovary, K.; Guedes, D. C.; Oliviera, E. P.; Rubenich, L. M.; Carvalho, L. C.; Oliveira, R. M.; Tano, T.; Gusmao Correia, M. L. J. Pharm. Pharmacol. 2002, 54, 1515-1520. https://doi.org/10.1211/002235702153
  24. Jimenez, R.; Lopez-Sepulveda, R.; Kadmiri, M.; Romero, M.; Vera, R.; Sanchez, M.; Vargas, F.; O'Valle, F.; Zarzuelo, A.; Duenas, M.; Santos-Buelga, C.; Duarte, J. Free Radic. Biol. Med. 2007, 43, 462-473. https://doi.org/10.1016/j.freeradbiomed.2007.05.007
  25. Dube, G. P.; Baik, Y. H.; Schwartz, A. J. Cardiovasc. Pharmacol. 1985, 7, 377-389. https://doi.org/10.1097/00005344-198503000-00025
  26. Dube, G. P.; Baik, Y. H.; Van Breemen, C.; Schwartz, A. Eur. J. Pharmacol. 1988, 145, 39-47. https://doi.org/10.1016/0014-2999(88)90346-9
  27. Kim, J. M.; Park, K. O.; Baik, Y. H. Chonnam. J. Med. Sci. 1989, 2, 50-59.
  28. Li, H. F.; Li, W.; Zheng, T. Z.; Qu, S. Y.; Zhang, C. L. Arch. Gynecol. Obstet. 2002, 266, 101-104. https://doi.org/10.1007/s004040100238
  29. Li, H. F.; Tian, Z. F.; Qiu, X. Q.;Wu, J. X.; Zhang, P.; Jia, Z. J. Physiol. Res. 2006, 55, 365-372.
  30. Nevala, R.; Korpela, R.; Vapaatalo, H. Life Sci. 1998, 63, 95-100.
  31. Spedding, M.; Paoletti, R. Pharmacol. Rev. 1992, 44, 363-376.
  32. Triggle, D. J.; Zheng, W.; Hawthorn. M. et al. Ann. NY. Acad. Sci. 1989, 560, 215-229. https://doi.org/10.1111/j.1749-6632.1989.tb24099.x
  33. Constantine, J. W.; Mcshane, W. K.; Scriabine, A.; Hess, H. J. In Analysis of the hypotensive action of prazosin, Hypertension: Mechanisms and Management; Onesti, G.; Kim, K. E.; Moyer, J. H. Ed; Grume & Stratton Inc; New York, 1973.
  34. Freis, E. D.; Mackay, J. C.; Oliver, W. F. Circulation 1951, 3, 254-259. https://doi.org/10.1161/01.CIR.3.2.254
  35. Ablad, B.; Borg, K. O.; Carlsson, E.; Johnson, G.; Malmfors, L.; Regardh, C. G. Acta. Pharmacol. Toxicol (Copenh). 1975, 36, 7-23.