DOI QR코드

DOI QR Code

Effects of Atomoxetine on Hyper-Locomotive Activity of the Prenatally Valproate-Exposed Rat Offspring

  • Choi, Chang Soon (Department of Neuroscience and Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences) ;
  • Hong, Minha (Department of Psychiatry, School of Medicine, Dankook University Hospital) ;
  • Kim, Ki Chan (Department of Neuroscience and Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences) ;
  • Kim, Ji-Woon (Department of Neuroscience and Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences) ;
  • Yang, Sung Min (Department of Neuroscience and Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences) ;
  • Seung, Hana (Department of Neuroscience and Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences) ;
  • Ko, Mee Jung (Department of Neuroscience and Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences) ;
  • Choi, Dong-Hee (Department of Neuroscience and Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences) ;
  • You, Jueng Soo (Department of Neuroscience and Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences) ;
  • Shin, Chan Young (Department of Neuroscience and Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences) ;
  • Bahn, Geon Ho (Department of Neuropsychiatry, School of Medicine, Kyung Hee University)
  • Received : 2014.03.04
  • Accepted : 2014.07.21
  • Published : 2014.09.30

Abstract

to valproic acid (VPA) during pregnancy produces ASD-like core behavioral phenotypes as well as hyperactivity in offspring both in human and experimental animals, which makes it a plausible model to study ASD-related neurobiological processes. In this study, we examined the effects of two of currently available attention defecit hyperactivity disorder (ADHD) medications, methylphenidate (MPH) and atomoxetine (ATX) targeting dopamine and norepinephrine transporters (DAT and NET), respectively, on hyperactive behavior of prenatally VPA-exposed rat offspring. In the prefrontal cortex of VPA exposed rat offspring, both mRNA and protein expression of DAT was increased as compared with control. VPA function as a histone deacetylase inhibitor (HDACi) and chromatin immunoprecipitation experiments demonstrated that the acetylation of histone bound to DAT gene promoter was increased in VPA-exposed rat offspring suggesting epigenetic mechanism of DAT regulation. Similarly, the expression of NET was increased, possibly via increased histone acetylation in prefrontal cortex of VPA-exposed rat offspring. When we treated the VPA-exposed rat offspring with ATX, a NET selective inhibitor, hyperactivity was reversed to control level. In contrast, MPH that inhibits both DAT and NET, did not produce inhibitory effects against hyperactivity. The results suggest that NET abnormalities may underlie the hyperactive phenotype in VPA animal model of ASD. Profiling the pharmacological responsiveness as well as investigating underlying mechanism in multiple models of ASD and ADHD may provide more insights into the neurobiological correlates regulating the behavioral abnormalities.

Keywords

References

  1. Ali, E. H. and Elgoly, A. H. (2013) Combined prenatal and postnatal butyl paraben exposure produces autism-like symptoms in offspring: Comparison with valproic acid autistic model. Pharmacol. Biochem. Behav. 111, 102-110. https://doi.org/10.1016/j.pbb.2013.08.016
  2. Baf, M. H., Subhash, M. N., Lakshmana, K. M. and Rao, B. S. (1994) Sodium valproate induced alterations in monoamine levels in different regions of the rat brain. Neurochem. Int. 24, 67-72. https://doi.org/10.1016/0197-0186(94)90130-9
  3. Banerjee, S., Riordan, M. and Bhat, M. (2014) Genetic aspects of autism spectrum disorders: insights from animal models. Front. Cell. Neurosci. 8, 58.
  4. Barr, A. M., Lehmann-Masten, V., Paulus, M., Gainetdinov, R. R., Caron, M. G. and Geyer, M. A. (2004) The selective serotonin-2A receptor antagonist M100907 reverses behavioral deficits in dopamine transporter knockout mice. Neuropsychopharmacology 29, 221-228. https://doi.org/10.1038/sj.npp.1300343
  5. Barr, C. L., Wigg, K., Zai, G., Roberts, W., Malone, M., Schachar, R., Tannock, R. and Kennedy, J. L. (2001) Attention-deficit hyperactivity disorder and the adrenergic receptors alpha 1C and alpha 2C. Mol. Psychiatry 6, 334-337. https://doi.org/10.1038/sj.mp.4000863
  6. Bayles, R., Baker, E., Eikelis, N., El-Osta, A. and Lambert, G. (2010) Histone modifications regulate the norepinephrine transporter gene. Cell Cycle 9, 4600-4601. https://doi.org/10.4161/cc.9.22.13888
  7. Biederman, J. and Spencer, T. (1999) Attention-deficit/hyperactivity disorder (ADHD) as a noradrenergic disorder. Biol. Psychiatry 46, 1234-1242. https://doi.org/10.1016/S0006-3223(99)00192-4
  8. Boy, F., Evans, C. J., Edden, R. A., Lawrence, A. D., Singh, K. D., Husain, M. and Sumner, P. (2011) Dorsolateral prefrontal gammaaminobutyric acid in men predicts individual differences in rash impulsivity. Biol. Psychiatry 70, 866-872. https://doi.org/10.1016/j.biopsych.2011.05.030
  9. Bymaster, F. P., Katner, J. S., Nelson, D. L., Hemrick-Luecke, S. K., Threlkeld, P. G., Heiligenstein, J. H., Morin, S. M., Gehlert, D. R. and Perry, K. W. (2002) Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: a potential mechanism for efficacy in attention deficit/hyperactivity disorder. Neuropsychopharmacology 27, 699-711. https://doi.org/10.1016/S0893-133X(02)00346-9
  10. Challman, T. D. and Lipsky, J. J. (2000) Methylphenidate: its pharmacology and uses. Mayo Clin. Proc. 75, 711-721. https://doi.org/10.1016/S0025-6196(11)64618-1
  11. Christianson, A. L., Chesler, N. and Kromberg, J. G. (1994) Fetal valproate syndrome: clinical and neuro-developmental features in two sibling pairs. Dev. Med. Child Neurol. 36, 361-369.
  12. Consortium. (1994) Fmr1 knockout mice: a model to study fragile X mental retardation. Cell 78, 23-33.
  13. Edden, R. A., Crocetti, D., Zhu, H., Gilbert, D. L. and Mostofsky, S. H. (2012) Reduced GABA concentration in attention-deficit/hyperactivity disorder. Arch. Gen. Psychiatry 69, 750-753.
  14. Flores, J. A., Galan-Rodriguez, B., Ramiro-Fuentes, S. and Fernandez-Espejo, E. (2006) Role for dopamine neurons of the rostral linear nucleus and periaqueductal gray in the rewarding and sensitizing properties of heroin. Neuropsychopharmacology 31, 1475-1488. https://doi.org/10.1038/sj.npp.1300946
  15. Gadow, K. D., Devincent, C. J., Pomeroy, J. and Azizian, A. (2005) Comparison of DSM-IV symptoms in elementary school-age children with PDD versus clinic and community samples. Autism 9, 392-415. https://doi.org/10.1177/1362361305056079
  16. Gatley, S. J., Pan, D., Chen, R., Chaturvedi, G. and Ding, Y. S. (1996) Affinities of methylphenidate derivatives for dopamine, norepinephrine and serotonin transporters. Life Sci. 58, 231-239.
  17. Han, H., Ma, Y., Eun, J. S., Hong, J. T. and Oh, K. W. (2008) Anxiolyticlike effects of cyclopeptide fraction alkaloids of Zizyphi Spinosi semen: possible involvement of GABAA receptors. Biomol. Ther. 16, 261-269. https://doi.org/10.4062/biomolther.2008.16.3.261
  18. Hunt, R. D., Arnsten, A. F. and Asbell, M. D. (1995) An open trial of guanfacine in the treatment of attention-deficit hyperactivity disorder. J. Am. Acad. Child Adolesc. Psychiatry 34, 50-54. https://doi.org/10.1097/00004583-199501000-00013
  19. Jaselskis, C. A., Cook, E. H., JR., Fletcher, K. E. and Leventhal, B. L. (1992) Clonidine treatment of hyperactive and impulsive children with autistic disorder. J. Clin. Psychopharmacol. 12, 322-327.
  20. Kim, K. C., Kim, P., Go, H. S., Choi, C. S., Park, J. H., Kim, H. J., Jeon, S. J., Dela Pena, I. C., Han, S. H., Cheong, J. H., Ryu, J. H. and Shin, C. Y. (2013) Male-specific alteration in excitatory postsynaptic development and social interaction in pre-natal valproic acid exposure model of autism spectrum disorder. J. Neurochem. 124, 832-843. https://doi.org/10.1111/jnc.12147
  21. Kim, K. C., Lee, D. K., Go, H. S., Kim, P., Choi, C. S., Kim, J. W., Jeon, S. J., Song, M. R. and Shin, C. Y. (2014) Pax6-dependent cortical glutamatergic neuronal differentiation regulates autism-like behavior in prenatally valproic acid-exposed rat offspring. Mol. Neurobiol. 49, 512-528. https://doi.org/10.1007/s12035-013-8535-2
  22. Lempp, T., Toennes, S. W., Wunder, C., Russe, O. Q., Moser, C. V., Kynast, K. L., Freitag, C. M. and Niederberger, E. (2013) Altered gene expression in the prefrontal cortex of young rats induced by the ADHD drug atomoxetine. Prog. Neuropsychopharmacol. Biol. Psychiatry 40, 221-228.
  23. Leyfer, O. T., Folstein, S. E., Bacalman, S., Davis, N. O., Dinh, E., Morgan, J., Tager-Flusberg, H. and Lainhart, J. E. (2006) Comorbid psychiatric disorders in children with autism: interview development and rates of disorders. J. Autism Dev. Disord. 36, 849-861. https://doi.org/10.1007/s10803-006-0123-0
  24. Lipska, B. K., Jaskiw, G. E. and Weinberger, D. R. (1993) Postpubertal emergence of hyperresponsiveness to stress and to amphetamine after neonatal excitotoxic hippocampal damage: a potential animal model of schizophrenia. Neuropsychopharmacology 9, 67-75. https://doi.org/10.1038/npp.1993.44
  25. Ludolph, A. G., Udvardi, P. T., Schaz, U., Henes, C., Adolph, O., Weigt, H. U., Fegert, J. M., Boeckers, T. M. and Fohr, K. J. (2010) Atomoxetine acts as an NMDA receptor blocker in clinically relevant concentrations. Br. J. Pharmacol. 160, 283-291. https://doi.org/10.1111/j.1476-5381.2010.00707.x
  26. Ma, C. L., Arnsten, A. F. and Li, B. M. (2005) Locomotor hyperactivity induced by blockade of prefrontal cortical alpha2-adrenoceptors in monkeys. Biol. Psychiatry 57, 192-195. https://doi.org/10.1016/j.biopsych.2004.11.004
  27. Masuo, Y., Ishido, M., Morita, M., Sawa, H., Nagashima, K. and Niki, E. (2007) Behavioural characteristics and gene expression in the hyperactive wiggling (Wig) rat. Eur. J. Neurosci. 25, 3659-3666. https://doi.org/10.1111/j.1460-9568.2007.05613.x
  28. Munarriz, R., Bennett, L. and Goldstein, I. (2002) Risperidone in children with autism and serious behavioral problems. N. Engl. J. Med. 347, 1890-1891; author reply 1890-1891. https://doi.org/10.1056/NEJM200212053472316
  29. Narita, N., Kato, M., Tazoe, M., Miyazaki, K., Narita, M. and Okado, N. (2002) Increased monoamine concentration in the brain and blood of fetal thalidomide-and valproic acid-exposed rat: putative animal models for autism. Pediatr. Res. 52, 576-579.
  30. Nelson, J. D., Denisenko, O. and Bomsztyk, K. (2006) Protocol for the fast chromatin immunoprecipitation (ChIP) method. Nat. Protoc. 1, 179-185. https://doi.org/10.1038/nprot.2006.27
  31. Pandolfo, P., Machado, N. J., Kofalvi, A., Takahashi, R. N. and Cunha, R. A. (2013) Caffeine regulates frontocorticostriatal dopamine transporter density and improves attention and cognitive deficits in an animal model of attention deficit hyperactivity disorder. Eur. Neuropsychopharmacol. 23, 317-328. https://doi.org/10.1016/j.euroneuro.2012.04.011
  32. Phiel, C. J., Zhang, F., Huang, E. Y., Guenther, M. G., Lazar, M. A. and Klein, P. S. (2001) Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J. Biol. Chem. 276, 36734-36741. https://doi.org/10.1074/jbc.M101287200
  33. Research Units on Pediatric Psychopharmacology Autism Network. (2005) Randomized, controlled, crossover trial of methylphenidate in pervasive developmental disorders with hyperactivity. Arch. Gen. Psychiatry 62, 1266-1274. https://doi.org/10.1001/archpsyc.62.11.1266
  34. Rinaldi, T., Kulangara, K., Antoniello, K. and Markram, H. (2007) Elevated NMDA receptor levels and enhanced postsynaptic long-term potentiation induced by prenatal exposure to valproic acid. Proc. Natl. Acad. Sci. U.S.A. 104, 13501-13506. https://doi.org/10.1073/pnas.0704391104
  35. Russell, V., De Villiers, A., Sagvolden, T., Lamm, M. and Taljaard, J. (1995) Altered dopaminergic function in the prefrontal cortex, nucleus accumbens and caudate-putamen of an animal model of attention-deficit hyperactivity disorder--the spontaneously hypertensive rat. Brain Res. 676, 343-351. https://doi.org/10.1016/0006-8993(95)00135-D
  36. Schneider, T. and Przewlocki, R. (2005) Behavioral alterations in rats prenatally exposed to valproic acid: animal model of autism. Neuropsychopharmacology 30, 80-89. https://doi.org/10.1038/sj.npp.1300518
  37. Schneider, T., Ziolkowska, B., Gieryk, A., Tyminska, A. and Przewlocki, R. (2007) Prenatal exposure to valproic acid disturbs the enkephalinergic system functioning, basal hedonic tone, and emotional responses in an animal model of autism. Psychopharmacology (Berl), 193, 547-555. https://doi.org/10.1007/s00213-007-0795-y
  38. Shaywitz, B. A., Yager, R. D. and Klopper, J. H. (1976) Selective brain dopamine depletion in developing rats: an experimental model of minimal brain dysfunction. Science 191, 305-308. https://doi.org/10.1126/science.942800
  39. Simonoff, E., Pickles, A., Charman, T., Chandler, S., Loucas, T. and Baird, G. (2008) Psychiatric disorders in children with autism spectrum disorders: prevalence, comorbidity, and associated factors in a population-derived sample. J. Am. Acad. Child Adolesc. Psychiatry 47, 921-929. https://doi.org/10.1097/CHI.0b013e318179964f
  40. Stigler, K. A., Desmond, L. A., Posey, D. J., Wiegand, R. E. and Mcdougle, C. J. (2004) A naturalistic retrospective analysis of psychostimulants in pervasive developmental disorders. J. Child Adolesc. Psychopharmacol. 14, 49-56. https://doi.org/10.1089/104454604773840481
  41. Sumner, P., Edden, R. A., Bompas, A., Evans, C. J. and Singh, K. D. (2010) More GABA, less distraction: a neurochemical predictor of motor decision speed. Nat. Neurosci. 13, 825-827. https://doi.org/10.1038/nn.2559
  42. Vizi, E. S., Zsilla, G., Caron, M. G. and Kiss, J. P. (2004) Uptake and release of norepinephrine by serotonergic terminals in norepinephrine transporter knock-out mice: implications for the action of selective serotonin reuptake inhibitors. J. Neurosci. 24, 7888-7894. https://doi.org/10.1523/JNEUROSCI.1506-04.2004
  43. Watanabe, Y., Fujita, M., Ito, Y., Okada, T., Kusuoka, H. and Nishimura, T. (1997) Brain dopamine transporter in spontaneously hypertensive rats. J. Nucl. Med. 38, 470-474.
  44. Wilkins, J. and Matson, J. L. (2009) A comparison of social skills profiles in intellectually disabled adults with and without ASD. Behav. Modif. 33, 143-155. https://doi.org/10.1177/0145445508321880
  45. Williams, G., King, J., Cunningham, M., Stephan, M., Kerr, B. and Hersh, J. H. (2001) Fetal valproate syndrome and autism: additional evidence of an association. Dev. Med. Child Neurol. 43, 202-206. https://doi.org/10.1111/j.1469-8749.2001.tb00188.x
  46. Wong, D. T., Threlkeld, P. G., Best, K. L. and Bymaster, F. P. (1982) A new inhibitor of norepinephrine uptake devoid of affinity for receptors in rat brain. J. Pharmacol. Exp. Ther. 222, 61-65.
  47. Xu, F., Gainetdinov, R. R., Wetsel, W. C., Jones, S. R., Bohn, L. M., Miller, G. W., Wang, Y. M. and Caron, M. G. (2000) Mice lacking the norepinephrine transporter are supersensitive to psychostimulants. Nat. Neurosci. 3, 465-471. https://doi.org/10.1038/74839
  48. Yamashita, M., Fukushima, S., Shen, H. W., Hall, F. S., Uhl, G. R., Numachi, Y., Kobayashi, H. and Sora, I. (2006) Norepinephrine transporter blockade can normalize the prepulse inhibition deficits found in dopamine transporter knockout mice. Neuropsychopharmacology 31, 2132-2139.
  49. Young, J. G., Kavanagh, M. E., Anderson, G. M., Shaywitz, B. A. and Cohen, D. J. (1982) Clinical neurochemistry of autism and associated disorders. J. Autism Dev. Disord. 12, 147-165. https://doi.org/10.1007/BF01531305
  50. Zhang, S. J., Huguenard, J. R. and Prince, D. A. (1997) GABAA receptor-mediated Cl-currents in rat thalamic reticular and relay neurons. J. Neurophysiol. 78, 2280-2286. https://doi.org/10.1152/jn.1997.78.5.2280

Cited by

  1. Phentermine induces conditioned rewarding effects via activation of the PI3K/Akt signaling pathway in the nucleus accumbens vol.233, pp.8, 2016, https://doi.org/10.1007/s00213-016-4231-z
  2. Exploring the Validity of Valproic Acid Animal Model of Autism vol.24, pp.4, 2015, https://doi.org/10.5607/en.2015.24.4.285
  3. Improvement by methylphenidate and atomoxetine of social interaction deficits and recognition memory impairment in a mouse model of valproic acid-induced autism vol.9, pp.9, 2016, https://doi.org/10.1002/aur.1596
  4. Molecular Pathology and Pharmacological Treatment of Autism Spectrum Disorder-Like Phenotypes Using Rodent Models vol.12, pp.1662-5102, 2018, https://doi.org/10.3389/fncel.2018.00422
  5. Genetic Signatures of Drug Response Variability in Drosophila melanogaster vol.213, pp.2, 2014, https://doi.org/10.1534/genetics.119.302381
  6. A Systematic Review of the Valproic-Acid-Induced Rodent Model of Autism vol.42, pp.1, 2020, https://doi.org/10.1159/000509109