References
- Ali, E. H. and Elgoly, A. H. (2013) Combined prenatal and postnatal butyl paraben exposure produces autism-like symptoms in offspring: Comparison with valproic acid autistic model. Pharmacol. Biochem. Behav. 111, 102-110. https://doi.org/10.1016/j.pbb.2013.08.016
- Baf, M. H., Subhash, M. N., Lakshmana, K. M. and Rao, B. S. (1994) Sodium valproate induced alterations in monoamine levels in different regions of the rat brain. Neurochem. Int. 24, 67-72. https://doi.org/10.1016/0197-0186(94)90130-9
- Banerjee, S., Riordan, M. and Bhat, M. (2014) Genetic aspects of autism spectrum disorders: insights from animal models. Front. Cell. Neurosci. 8, 58.
- Barr, A. M., Lehmann-Masten, V., Paulus, M., Gainetdinov, R. R., Caron, M. G. and Geyer, M. A. (2004) The selective serotonin-2A receptor antagonist M100907 reverses behavioral deficits in dopamine transporter knockout mice. Neuropsychopharmacology 29, 221-228. https://doi.org/10.1038/sj.npp.1300343
- Barr, C. L., Wigg, K., Zai, G., Roberts, W., Malone, M., Schachar, R., Tannock, R. and Kennedy, J. L. (2001) Attention-deficit hyperactivity disorder and the adrenergic receptors alpha 1C and alpha 2C. Mol. Psychiatry 6, 334-337. https://doi.org/10.1038/sj.mp.4000863
- Bayles, R., Baker, E., Eikelis, N., El-Osta, A. and Lambert, G. (2010) Histone modifications regulate the norepinephrine transporter gene. Cell Cycle 9, 4600-4601. https://doi.org/10.4161/cc.9.22.13888
- Biederman, J. and Spencer, T. (1999) Attention-deficit/hyperactivity disorder (ADHD) as a noradrenergic disorder. Biol. Psychiatry 46, 1234-1242. https://doi.org/10.1016/S0006-3223(99)00192-4
- Boy, F., Evans, C. J., Edden, R. A., Lawrence, A. D., Singh, K. D., Husain, M. and Sumner, P. (2011) Dorsolateral prefrontal gammaaminobutyric acid in men predicts individual differences in rash impulsivity. Biol. Psychiatry 70, 866-872. https://doi.org/10.1016/j.biopsych.2011.05.030
- Bymaster, F. P., Katner, J. S., Nelson, D. L., Hemrick-Luecke, S. K., Threlkeld, P. G., Heiligenstein, J. H., Morin, S. M., Gehlert, D. R. and Perry, K. W. (2002) Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: a potential mechanism for efficacy in attention deficit/hyperactivity disorder. Neuropsychopharmacology 27, 699-711. https://doi.org/10.1016/S0893-133X(02)00346-9
- Challman, T. D. and Lipsky, J. J. (2000) Methylphenidate: its pharmacology and uses. Mayo Clin. Proc. 75, 711-721. https://doi.org/10.1016/S0025-6196(11)64618-1
- Christianson, A. L., Chesler, N. and Kromberg, J. G. (1994) Fetal valproate syndrome: clinical and neuro-developmental features in two sibling pairs. Dev. Med. Child Neurol. 36, 361-369.
- Consortium. (1994) Fmr1 knockout mice: a model to study fragile X mental retardation. Cell 78, 23-33.
- Edden, R. A., Crocetti, D., Zhu, H., Gilbert, D. L. and Mostofsky, S. H. (2012) Reduced GABA concentration in attention-deficit/hyperactivity disorder. Arch. Gen. Psychiatry 69, 750-753.
- Flores, J. A., Galan-Rodriguez, B., Ramiro-Fuentes, S. and Fernandez-Espejo, E. (2006) Role for dopamine neurons of the rostral linear nucleus and periaqueductal gray in the rewarding and sensitizing properties of heroin. Neuropsychopharmacology 31, 1475-1488. https://doi.org/10.1038/sj.npp.1300946
- Gadow, K. D., Devincent, C. J., Pomeroy, J. and Azizian, A. (2005) Comparison of DSM-IV symptoms in elementary school-age children with PDD versus clinic and community samples. Autism 9, 392-415. https://doi.org/10.1177/1362361305056079
- Gatley, S. J., Pan, D., Chen, R., Chaturvedi, G. and Ding, Y. S. (1996) Affinities of methylphenidate derivatives for dopamine, norepinephrine and serotonin transporters. Life Sci. 58, 231-239.
- Han, H., Ma, Y., Eun, J. S., Hong, J. T. and Oh, K. W. (2008) Anxiolyticlike effects of cyclopeptide fraction alkaloids of Zizyphi Spinosi semen: possible involvement of GABAA receptors. Biomol. Ther. 16, 261-269. https://doi.org/10.4062/biomolther.2008.16.3.261
- Hunt, R. D., Arnsten, A. F. and Asbell, M. D. (1995) An open trial of guanfacine in the treatment of attention-deficit hyperactivity disorder. J. Am. Acad. Child Adolesc. Psychiatry 34, 50-54. https://doi.org/10.1097/00004583-199501000-00013
- Jaselskis, C. A., Cook, E. H., JR., Fletcher, K. E. and Leventhal, B. L. (1992) Clonidine treatment of hyperactive and impulsive children with autistic disorder. J. Clin. Psychopharmacol. 12, 322-327.
- Kim, K. C., Kim, P., Go, H. S., Choi, C. S., Park, J. H., Kim, H. J., Jeon, S. J., Dela Pena, I. C., Han, S. H., Cheong, J. H., Ryu, J. H. and Shin, C. Y. (2013) Male-specific alteration in excitatory postsynaptic development and social interaction in pre-natal valproic acid exposure model of autism spectrum disorder. J. Neurochem. 124, 832-843. https://doi.org/10.1111/jnc.12147
- Kim, K. C., Lee, D. K., Go, H. S., Kim, P., Choi, C. S., Kim, J. W., Jeon, S. J., Song, M. R. and Shin, C. Y. (2014) Pax6-dependent cortical glutamatergic neuronal differentiation regulates autism-like behavior in prenatally valproic acid-exposed rat offspring. Mol. Neurobiol. 49, 512-528. https://doi.org/10.1007/s12035-013-8535-2
- Lempp, T., Toennes, S. W., Wunder, C., Russe, O. Q., Moser, C. V., Kynast, K. L., Freitag, C. M. and Niederberger, E. (2013) Altered gene expression in the prefrontal cortex of young rats induced by the ADHD drug atomoxetine. Prog. Neuropsychopharmacol. Biol. Psychiatry 40, 221-228.
- Leyfer, O. T., Folstein, S. E., Bacalman, S., Davis, N. O., Dinh, E., Morgan, J., Tager-Flusberg, H. and Lainhart, J. E. (2006) Comorbid psychiatric disorders in children with autism: interview development and rates of disorders. J. Autism Dev. Disord. 36, 849-861. https://doi.org/10.1007/s10803-006-0123-0
- Lipska, B. K., Jaskiw, G. E. and Weinberger, D. R. (1993) Postpubertal emergence of hyperresponsiveness to stress and to amphetamine after neonatal excitotoxic hippocampal damage: a potential animal model of schizophrenia. Neuropsychopharmacology 9, 67-75. https://doi.org/10.1038/npp.1993.44
- Ludolph, A. G., Udvardi, P. T., Schaz, U., Henes, C., Adolph, O., Weigt, H. U., Fegert, J. M., Boeckers, T. M. and Fohr, K. J. (2010) Atomoxetine acts as an NMDA receptor blocker in clinically relevant concentrations. Br. J. Pharmacol. 160, 283-291. https://doi.org/10.1111/j.1476-5381.2010.00707.x
- Ma, C. L., Arnsten, A. F. and Li, B. M. (2005) Locomotor hyperactivity induced by blockade of prefrontal cortical alpha2-adrenoceptors in monkeys. Biol. Psychiatry 57, 192-195. https://doi.org/10.1016/j.biopsych.2004.11.004
- Masuo, Y., Ishido, M., Morita, M., Sawa, H., Nagashima, K. and Niki, E. (2007) Behavioural characteristics and gene expression in the hyperactive wiggling (Wig) rat. Eur. J. Neurosci. 25, 3659-3666. https://doi.org/10.1111/j.1460-9568.2007.05613.x
- Munarriz, R., Bennett, L. and Goldstein, I. (2002) Risperidone in children with autism and serious behavioral problems. N. Engl. J. Med. 347, 1890-1891; author reply 1890-1891. https://doi.org/10.1056/NEJM200212053472316
- Narita, N., Kato, M., Tazoe, M., Miyazaki, K., Narita, M. and Okado, N. (2002) Increased monoamine concentration in the brain and blood of fetal thalidomide-and valproic acid-exposed rat: putative animal models for autism. Pediatr. Res. 52, 576-579.
- Nelson, J. D., Denisenko, O. and Bomsztyk, K. (2006) Protocol for the fast chromatin immunoprecipitation (ChIP) method. Nat. Protoc. 1, 179-185. https://doi.org/10.1038/nprot.2006.27
- Pandolfo, P., Machado, N. J., Kofalvi, A., Takahashi, R. N. and Cunha, R. A. (2013) Caffeine regulates frontocorticostriatal dopamine transporter density and improves attention and cognitive deficits in an animal model of attention deficit hyperactivity disorder. Eur. Neuropsychopharmacol. 23, 317-328. https://doi.org/10.1016/j.euroneuro.2012.04.011
- Phiel, C. J., Zhang, F., Huang, E. Y., Guenther, M. G., Lazar, M. A. and Klein, P. S. (2001) Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J. Biol. Chem. 276, 36734-36741. https://doi.org/10.1074/jbc.M101287200
- Research Units on Pediatric Psychopharmacology Autism Network. (2005) Randomized, controlled, crossover trial of methylphenidate in pervasive developmental disorders with hyperactivity. Arch. Gen. Psychiatry 62, 1266-1274. https://doi.org/10.1001/archpsyc.62.11.1266
- Rinaldi, T., Kulangara, K., Antoniello, K. and Markram, H. (2007) Elevated NMDA receptor levels and enhanced postsynaptic long-term potentiation induced by prenatal exposure to valproic acid. Proc. Natl. Acad. Sci. U.S.A. 104, 13501-13506. https://doi.org/10.1073/pnas.0704391104
- Russell, V., De Villiers, A., Sagvolden, T., Lamm, M. and Taljaard, J. (1995) Altered dopaminergic function in the prefrontal cortex, nucleus accumbens and caudate-putamen of an animal model of attention-deficit hyperactivity disorder--the spontaneously hypertensive rat. Brain Res. 676, 343-351. https://doi.org/10.1016/0006-8993(95)00135-D
- Schneider, T. and Przewlocki, R. (2005) Behavioral alterations in rats prenatally exposed to valproic acid: animal model of autism. Neuropsychopharmacology 30, 80-89. https://doi.org/10.1038/sj.npp.1300518
- Schneider, T., Ziolkowska, B., Gieryk, A., Tyminska, A. and Przewlocki, R. (2007) Prenatal exposure to valproic acid disturbs the enkephalinergic system functioning, basal hedonic tone, and emotional responses in an animal model of autism. Psychopharmacology (Berl), 193, 547-555. https://doi.org/10.1007/s00213-007-0795-y
- Shaywitz, B. A., Yager, R. D. and Klopper, J. H. (1976) Selective brain dopamine depletion in developing rats: an experimental model of minimal brain dysfunction. Science 191, 305-308. https://doi.org/10.1126/science.942800
- Simonoff, E., Pickles, A., Charman, T., Chandler, S., Loucas, T. and Baird, G. (2008) Psychiatric disorders in children with autism spectrum disorders: prevalence, comorbidity, and associated factors in a population-derived sample. J. Am. Acad. Child Adolesc. Psychiatry 47, 921-929. https://doi.org/10.1097/CHI.0b013e318179964f
- Stigler, K. A., Desmond, L. A., Posey, D. J., Wiegand, R. E. and Mcdougle, C. J. (2004) A naturalistic retrospective analysis of psychostimulants in pervasive developmental disorders. J. Child Adolesc. Psychopharmacol. 14, 49-56. https://doi.org/10.1089/104454604773840481
- Sumner, P., Edden, R. A., Bompas, A., Evans, C. J. and Singh, K. D. (2010) More GABA, less distraction: a neurochemical predictor of motor decision speed. Nat. Neurosci. 13, 825-827. https://doi.org/10.1038/nn.2559
- Vizi, E. S., Zsilla, G., Caron, M. G. and Kiss, J. P. (2004) Uptake and release of norepinephrine by serotonergic terminals in norepinephrine transporter knock-out mice: implications for the action of selective serotonin reuptake inhibitors. J. Neurosci. 24, 7888-7894. https://doi.org/10.1523/JNEUROSCI.1506-04.2004
- Watanabe, Y., Fujita, M., Ito, Y., Okada, T., Kusuoka, H. and Nishimura, T. (1997) Brain dopamine transporter in spontaneously hypertensive rats. J. Nucl. Med. 38, 470-474.
- Wilkins, J. and Matson, J. L. (2009) A comparison of social skills profiles in intellectually disabled adults with and without ASD. Behav. Modif. 33, 143-155. https://doi.org/10.1177/0145445508321880
- Williams, G., King, J., Cunningham, M., Stephan, M., Kerr, B. and Hersh, J. H. (2001) Fetal valproate syndrome and autism: additional evidence of an association. Dev. Med. Child Neurol. 43, 202-206. https://doi.org/10.1111/j.1469-8749.2001.tb00188.x
- Wong, D. T., Threlkeld, P. G., Best, K. L. and Bymaster, F. P. (1982) A new inhibitor of norepinephrine uptake devoid of affinity for receptors in rat brain. J. Pharmacol. Exp. Ther. 222, 61-65.
- Xu, F., Gainetdinov, R. R., Wetsel, W. C., Jones, S. R., Bohn, L. M., Miller, G. W., Wang, Y. M. and Caron, M. G. (2000) Mice lacking the norepinephrine transporter are supersensitive to psychostimulants. Nat. Neurosci. 3, 465-471. https://doi.org/10.1038/74839
- Yamashita, M., Fukushima, S., Shen, H. W., Hall, F. S., Uhl, G. R., Numachi, Y., Kobayashi, H. and Sora, I. (2006) Norepinephrine transporter blockade can normalize the prepulse inhibition deficits found in dopamine transporter knockout mice. Neuropsychopharmacology 31, 2132-2139.
- Young, J. G., Kavanagh, M. E., Anderson, G. M., Shaywitz, B. A. and Cohen, D. J. (1982) Clinical neurochemistry of autism and associated disorders. J. Autism Dev. Disord. 12, 147-165. https://doi.org/10.1007/BF01531305
- Zhang, S. J., Huguenard, J. R. and Prince, D. A. (1997) GABAA receptor-mediated Cl-currents in rat thalamic reticular and relay neurons. J. Neurophysiol. 78, 2280-2286. https://doi.org/10.1152/jn.1997.78.5.2280
Cited by
- Phentermine induces conditioned rewarding effects via activation of the PI3K/Akt signaling pathway in the nucleus accumbens vol.233, pp.8, 2016, https://doi.org/10.1007/s00213-016-4231-z
- Exploring the Validity of Valproic Acid Animal Model of Autism vol.24, pp.4, 2015, https://doi.org/10.5607/en.2015.24.4.285
- Improvement by methylphenidate and atomoxetine of social interaction deficits and recognition memory impairment in a mouse model of valproic acid-induced autism vol.9, pp.9, 2016, https://doi.org/10.1002/aur.1596
- Molecular Pathology and Pharmacological Treatment of Autism Spectrum Disorder-Like Phenotypes Using Rodent Models vol.12, pp.1662-5102, 2018, https://doi.org/10.3389/fncel.2018.00422
- Genetic Signatures of Drug Response Variability in Drosophila melanogaster vol.213, pp.2, 2014, https://doi.org/10.1534/genetics.119.302381
- A Systematic Review of the Valproic-Acid-Induced Rodent Model of Autism vol.42, pp.1, 2020, https://doi.org/10.1159/000509109