DOI QR코드

DOI QR Code

HD047703, a New Promising Anti-Diabetic Drug Candidate: In Vivo Preclinical Studies

  • Kim, SoRa (New Drug Discovery Lab., Hyundai Pharmaceutical Co. Ltd., Gyeong-Gi Bio-Center) ;
  • Kim, Dae Hoon (New Drug Discovery Lab., Hyundai Pharmaceutical Co. Ltd., Gyeong-Gi Bio-Center) ;
  • Kim, Young-Seok (New Drug Discovery Lab., Hyundai Pharmaceutical Co. Ltd., Gyeong-Gi Bio-Center) ;
  • Ha, Tae-Young (New Drug Discovery Lab., Hyundai Pharmaceutical Co. Ltd., Gyeong-Gi Bio-Center) ;
  • Yang, Jin (New Drug Discovery Lab., Hyundai Pharmaceutical Co. Ltd., Gyeong-Gi Bio-Center) ;
  • Park, Soo Hyun (Bio-therapy Human Resources Center, Animal Medical Center and Department of Veterinary Physiology, College of Veterrinary Medicine, Chonnam National University) ;
  • Jeong, Kwang Won (College of Pharmacy, Gachon University) ;
  • Rhee, Jae-Keol (New Drug Discovery Lab., Hyundai Pharmaceutical Co. Ltd., Gyeong-Gi Bio-Center)
  • Received : 2014.03.20
  • Accepted : 2014.06.13
  • Published : 2014.09.30

Abstract

G-protein coupled receptor 119 (GPR119) has emerged as a novel target for the treatment of type 2 diabetes mellitus. GPR119 is involved in glucose-stimulated insulin secretion (GSIS) from the pancreatic b-cells and intestinal cells. In this study, we identified a novel small-molecule GPR119 agonist, HD047703, which raises intracellular cAMP concentrations in pancreatic ${\beta}$-cells and can be expected to potentiate glucose-stimulated insulin secretion from human GPR119 receptor stably expressing cells (CHO cells). We evaluated the acute efficacy of HD047703 by the oral glucose tolerance test (OGTT) in normal C57BL/6J mice. Then, chronic administrations of HD047703 were performed to determine its efficacy in various diabetic rodent models. Single administration of HD047703 caused improved glycemic control during OGTT in a dose-dependent manner in normal mice, and the plasma GLP-1 level was also increased. With respect to chronic efficacy, we observed a decline in blood glucose levels in db/db, ob/ob and DIO mice. These results suggest that HD047703 may be a potentially promising anti-diabetic agent.

Keywords

References

  1. Amiel, S. A., Dixon, T., Mann, R. and Jameson, K. (2008) Hypoglycaemia in type 2 diabetes. Diabet. Med. 25, 245-254. https://doi.org/10.1111/j.1464-5491.2007.02341.x
  2. Barnett, A. (2006) DPP-4 inhibitors and their potential role in the management of type 2 diabetes. Int. J. Clin. Pract. 60, 1454-1470. https://doi.org/10.1111/j.1742-1241.2006.01178.x
  3. Barnett, A., Allsworth, J., Jameson, K. and Mann, R. (2007) A review of the effects of antihyperglycaemic agents on body weight: The potential of incretin targeted therapies. Curr. Med. Res. Opin. 23, 1493-1507. https://doi.org/10.1185/030079907X199691
  4. Bekur, R., Nagaraja, M. V., Shivashankara, K. N. and Stanley, W. (2010) Sitagliptin-induced hemolysis. Indian J. Pharmacol. 42, 320-321. https://doi.org/10.4103/0253-7613.70405
  5. Chu, Z. L., Jones, R. M., He, H., Carroll, C., Gutierrez, V., Lucman, A., Moloney, M., Gao, H., Mondala, H., Bagnol, D., Unett, D., Liang, Y., Demarest, K., Semple, G., Behan, D. P. and Leonard, J. (2007) A role for beta-cell-expressed G protein-coupled receptor 119 in glycemic control by enhancing glucose-dependent insulin release. Endocrinology 148, 2601-2609. https://doi.org/10.1210/en.2006-1608
  6. DeFronzo, R. A., Bonadonna, R. C. and Ferrannini, E. (1992) Pathogenesis of NIDDM. A balanced overview. Diabetes Care 15, 318-368. https://doi.org/10.2337/diacare.15.3.318
  7. Drucker, D. J., Jin, T., Asa, S. L., Young, T. A. and Brubaker, P. L. (1994) Activation of proglucagon gene transcription by protein kinase-A in a novel mouse enteroendocrine cell line. Mol. Endocrinol. 8, 1646-1655.
  8. Furman, B., Pyne, N., Flatt, P. and O'Harte, F. (2004). Targeting beta-cell cyclic 3′5′ adenosine monophosphate for the development of novel drugs for treating type 2 diabetes mellitus. A review. J. Pharm. Pharmacol. 56, 1477-1492. https://doi.org/10.1211/0022357044805
  9. Giorgino, F., Leonardini, A., Natalicchio, A. and Laviola, L. (2011) Multifactorial intervention in Type 2 diabetes: the promise of incretinbased therapies. J. Endocrinol. Invest. 34, 69-77. https://doi.org/10.1007/BF03346698
  10. Ho, J., Leung, A. K. and Rabi, D. (2011) Hypoglycemic agents in the management of type 2 diabetes mellitus. Recent Pat. Endocr. Metab. Immune Drug Discov. 5, 66-73. https://doi.org/10.2174/187221411794351879
  11. Iltz, J. L., Baker, D. E., Setter, S. M. and Keith Campbell, R. (2006) Exenatide: An incretin mimetic for the treatment of type 2 diabetes mellitus. Clin. Ther. 28, 652-665. https://doi.org/10.1016/j.clinthera.2006.05.006
  12. Jones, R. M. and Leonard, J. N. (2009) The emergence of GPR119 agonists as anti-diabetic agents. In Annual Reports in Medicinal Chemistry Vol 44 (J. E. Macor, Ed), pp149-170, Academic Press, Oxford.
  13. Jones, R. M., Leonard, J. N., Buzard, D. J. and Lehmann, J. (2009) GPR119 agonists for the treatment of type 2 diabetes. Expert Opin. Ther. Pat. 19, 1339-1359. https://doi.org/10.1517/13543770903153878
  14. Katz, L. B., Gambale, J. J., Rothenberq, P. L., Vanapalli, S. R., Vann aro, N., Xi, L., Sarich, T. C. and Stein, P. P. (2012) Effects of JNJ-38431055, a novel GPR119 receptor agonist, in randomized, doubleblind, placebe-controlled studies in subjects with type 2 diabetes. Diabetes Obes. Metab. 14, 709-716. https://doi.org/10.1111/j.1463-1326.2012.01587.x
  15. Kreymann, B., Williams, G., Ghatei, M. A. and Bloom, S. R. (1987). Glucagon-like peptide-1 7-36: A physiological incretin in man. Lancet 2, 1300-1304.
  16. Iyer, S. N., Drake, A. J. 3rd, West, R. L., Mendez, C. E. and Tanenberg, R. J. (2012) Case report of acute necrotizing pancreatitis associated with combination treatment of sitagliptin and exenatide. Endocr. Pract. 18, e10-13. https://doi.org/10.4158/EP11264.CR
  17. Meece, J. (2007) Pancreatic islet dysfunction in type 2 diabetes: a rational target for incretin-based therapies. Curr. Med. Res. Opin. 23, 933-944. https://doi.org/10.1185/030079906X167336
  18. Raun, K., von Voss, P., Gotfredsen, C. F., Golozoubova, V., Rolin, B. and Knudsen, L. B. (2007) Liraglutide, a long-acting glucagon-like peptide-1 analog, reduces body weight and food intake in obese candy-fed rats, whereas a dipeptidyl peptidase-iv inhibitor, vildagliptin, does not. Diabetes 56, 8-15. https://doi.org/10.2337/db06-0565
  19. Ross, S. A. and Ekoe, J. M. (2010). Incretin agents in type 2 diabetes. Can. Fam. Physician 56, 639-648.
  20. Taylor, S. I., Accili, D. and Imai, Y. (1994) Insulin resistance or insulin deficiency: Which is the primary cause of NIDDM. Diabetes 43, 735-740. https://doi.org/10.2337/diab.43.6.735
  21. Winzell, M. S. and Ahren, B. (2004) The high-fat diet-fed mouse: a model for studying mechanisms and treatment of impaired glucose tolerance and type 2 diabetes. Diabetes 53, S215-219. https://doi.org/10.2337/diabetes.53.suppl_3.S215
  22. Yokota, K. and Igaki, N. (2012) Sitagliptin (DPP-4 inhibitor)-induced rheumatoid arthritis in type 2 diabetes mellitus: A case report. Intern. Med. 51, 2041-2044. https://doi.org/10.2169/internalmedicine.51.7592
  23. Xia, Y., Chackalamannil, S., Greenlee, W. J., Jayne, C., Neustadt, B., Stamford, A., Vaccaro, H., Xu, X. L., Baker, H., O'Neill, K., Woods, M., Hawes, B. and Kowalski, T. (2011) Discovery of a nortropanol derivative as a potent and orally active GPR119 agonist for the type 2 diabetes. Bioorg. Med. Chem. Lett. 21, 3290-3296. https://doi.org/10.1016/j.bmcl.2011.04.035
  24. Yoshida, S., Tanaka, H., Oshima, H., Yamazaki, T., Yonetoku, Y., Ohishi, T., Matsui, T. and Shibasaki, M. (2010) AS1907417, a novel GPR119 agonist, as an insulinotropic and b-cell preservative agent for the treatment of type 2 diabetes. Biochem. Biophysis. Res. Commun. 400, 745-751. https://doi.org/10.1016/j.bbrc.2010.08.141

Cited by

  1. Therapeutic application of GPR119 ligands in metabolic disorders 2017, https://doi.org/10.1111/dom.13062
  2. Structure and biological activity of endogenous and synthetic agonists of GPR119 vol.87, pp.2, 2018, https://doi.org/10.1070/rcr4737
  3. Targeting the GPR119/incretin axis: a promising new therapy for metabolic-associated fatty liver disease vol.26, pp.1, 2021, https://doi.org/10.1186/s11658-021-00276-7