References
- Aggarwal, B. B. (2003) Signaling pathways of the TNF superfamily: a double-edged sword. Nat. Rev. Immunol. 3, 745-756. https://doi.org/10.1038/nri1184
- Agrawal, S. M., Lau, L. and Yong V. W. (2008) MMPs in the central nervous system: where the good guys go bad. Semin. Cell Dev. Biol. 19, 42-51. https://doi.org/10.1016/j.semcdb.2007.06.003
-
Asai, M., Hattori, C., Szabo, B., Sasagawa, N., Maruyama, K., Tanuma, S. and Ishiura, S. (2003) Putative function of ADAM9, ADAM10, and ADAM17 as APP
${\alpha}$ -secretase. Biochem. Biophys. Res. Commun. 301, 231-235. https://doi.org/10.1016/S0006-291X(02)02999-6 - Bahia M. S. and Silakari O. (2010) Tumor necrosis factor alpha converting enzyme: an encouraging target for various inflammatory disorders. Chem. Biol. Drug Des. 75, 415-443. https://doi.org/10.1111/j.1747-0285.2010.00950.x
- Black, R. A., Rauch, C. T., Kozlosky, C. J., Peschon, J. J., Slack, J. L., Wolfson, M. F., Castner, B. J., Stocking, K. L., Reddy, P., Srinivasan, S., Nelson, N., Boiani, N., Schooley, K. A., Gerhart M., Davis, R., Fitzner, J. N., Johnson, R. S., Paxton, R. J., March, C. J. and Cerretti, D. P. (1997) A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature 385, 729-733. https://doi.org/10.1038/385729a0
- Bocchini, V., Mazzolla, R., Barluzzi, R., Blasi, E., Sick, P. and Kettenmann, H. (1992) An immortalized cell line expresses properties of activated microglial cells. J. Neurosci. Res. 31, 616-621. https://doi.org/10.1002/jnr.490310405
- Candelario-Jalil, E., Yang, Y. and Rosenberg, G. A. (2009) Diverse roles of matrix metalloproteinases and tissue inhibitors of metalloproteinases in neuroinflammation and cerebral ischemia. Neuroscience 158, 983-994. https://doi.org/10.1016/j.neuroscience.2008.06.025
- Dev, R., Srivastava, P. K., Iyer, J. P., Dastidar, S. G. and Ray, A. (2010) Therapeutic potential of matrix metalloprotease inhibitors in neuropathic pain. Expert Opin. Investig. Drugs 19, 455-468. https://doi.org/10.1517/13543781003643486
- Gearing, A. J., Beckett, P., Christodoulou, M., Churchill, M., Clements, J.,M., Crimmin, M., Davidson, A. H., Drummond, A. H., Galloway, W. A., Gilbert, R., Gordon, J. L., Leber, T. M., Mangan, M., Miller, K., Nayee, P., Owen, K., Patel, S., Thomasv W., Wells, G., Wood, L. M. and Woolley, K. (1995) Matrix metalloproteinases and processing of pro-TNF-alpha. J. Leukoc. Biol. 57, 774-777. https://doi.org/10.1002/jlb.57.5.774
- Hu, J., Van den, Steen P. E., Sang, Q. X. A. and Opdenakker, G. (2007) Matrix metalloproteinase inhibitors as therapy for inflammatory and vascular diseases. Nat. Rev. Drug Dicsov. 6, 480-498. https://doi.org/10.1038/nrd2308
- Javaid, M. A., Abdallah, M. N., Ahmed, A. S. and Sheikh, Z. (2013) Matrix metalloproteinases and their pathological upregulation in multiple sclerosis: an overview. Acta Neurol. Belg. 113, 381-390. https://doi.org/10.1007/s13760-013-0239-x
- Kataoka, H. (2009) EGFR ligands and their signaling scissors, ADAMs, as new molecular targets for anticancer treatments. J. Dermatol. Sci. 56, 148-153. https://doi.org/10.1016/j.jdermsci.2009.10.002
-
Lee, E. J., Woo, M. S., Moon, P. G., Baek, M. C., Choi, I. Y., Kim, W. K., Junn, E. and Kim, H. S. (2010)
${\alpha}$ -Synuclein activates microglia by inducing the expressions of matrix metalloproteases and the subsequent activation of protease-activated receptor-1. J. Immunol. 185, 615-623. https://doi.org/10.4049/jimmunol.0903480 -
Lee, E. J., Han, J. E., Woo, M. S., Shin, J. A., Park, E. M., Kang, J. L., Moon, P. G., Baek, M. C., Son, W. S., Ko, Y. T., Choi, J. W. and Kim, H. S. (2014) Matrix metalloproteinase-8 plays a pivotal role in neuroinflammation by modulating TNF-
${\alpha}$ activation. J. Immunol. 193, 2384-2393. https://doi.org/10.4049/jimmunol.1303240 - Li, N. G., Tang, Y. P., Duan, J. A. and Shi, Z. H. (2014) Matrix metalloproteinase inhibitors: a patent review (2011-2013). Expert Opin. Ther. Pat. 24, 1039-1052. https://doi.org/10.1517/13543776.2014.937424
- Mayhan, W. G. (2002) Cellular mechanisms by which tumor necrosis factor-a produces disruption of the blood-brain barrier. Brain Res. 927, 144-152. https://doi.org/10.1016/S0006-8993(01)03348-0
- McCoy, M. and Tansey, M. G. (2008) TNF signaling inhibition in the CNS: implications for normal brain function and neurodegenerative disease. J. Neuroinflammation 5, 45. https://doi.org/10.1186/1742-2094-5-45
- Minond, D., Cudic, M., Bionda, N., Giulianotti, M., Maida, L., Houghten, R. A. and Fields, G. B. (2012) Discovery of novel inhibitors of a disintegrin and metalloprotease 17 (ADAM17) using glycosylated and non-glycosylated substrates. J. Biol. Chem. 287, 36473-36487. https://doi.org/10.1074/jbc.M112.389114
- Morancho, A., Rosell, A., Garcia-Bonilla L. and Montaner J. (2010) Matrix metalloproteinase and stroke infarct size: role for anti-inflammatory treatment. Ann. N. Y. Acad. Sci. 1207, 123-133. https://doi.org/10.1111/j.1749-6632.2010.05734.x
- Moss, M. L., Jin, S. L., Milla, M. E., Bickett, D. M., Burkhart, W., Carter, H. L., Chen, W. J., Clay, W. C., Didsbury, J. R., Hassler, D., Hoffman, C. R., Kost, T. A., Lambert, M. H., Leesnitzer, M. A., McCauley, P., McGeehan, G., Mitchell, J., Moyer, M., Pahel, G., Rocque, W., Overton, L. K., Schoenen, F., Seaton, T., Su, J. L. and Becherer, J. D. (1997) Cloning of a disintegrin metalloproteinase that processes precursor tumour-necrosis factor-alpha. Nature 385, 733-736 https://doi.org/10.1038/385733a0
- Moss, M. L., Sklair-Tavron, L. and Nudelman, R. (2008) Drug insight: tumor necrosis factor-converting enzyme as a pharmaceutical target for rheumatoid arthritis. Nat. Clin. Pract. Rheumatol. 4, 300-309.
- Rosenberg, G. A. (2009) Matrix metalloproteinases and their multiple roles in neurodegenerative diseases. Lancet Neurol. 8, 205-216. https://doi.org/10.1016/S1474-4422(09)70016-X
- Tian, L., Ma, L., Kaarela, T. and Li, Z. (2012) Neuroimmune crosstalk in the central nervous system and its significance for neurological diseases. J. Neuroinflammation 9, 155. https://doi.org/10.1186/1742-2094-9-155
- Verma, R. P. and Hansch, C. (2007) Matrix metalloproteinases (MMPs): Chemical-biological functions and (Q)SARs. Bioorg. Med. Chem. 15, 2223-2268 https://doi.org/10.1016/j.bmc.2007.01.011
- Verslegers, M., Lemmens, K., Hove, I. V. and Moons, L. (2013) Matrix metalloproteinase-2 and-9 as promising benefactors in development, plasticity and repair of the nervous system. Prog. Neurobiol. 105, 60-78. https://doi.org/10.1016/j.pneurobio.2013.03.004
- Woo, M. S., Park, J. S., Choi, I. Y., Kim, W. K. and Kim, H. S. (2008) Inhibition of MMP-3 or-9 suppresses lipopolysaccharide-induced expression of proinflammatory cytokines and iNOS in microglia. J. Neurochem 106, 770-780. https://doi.org/10.1111/j.1471-4159.2008.05430.x
Cited by
- Thioredoxin fusion construct enables high-yield production of soluble, active matrix metalloproteinase-8 (MMP-8) in Escherichia coli vol.122, 2016, https://doi.org/10.1016/j.pep.2016.02.012
- Complex Roles of Microglial Cells in Ischemic Stroke Pathobiology: New Insights and Future Directions vol.18, pp.3, 2017, https://doi.org/10.3390/ijms18030496
- Ethanol-Induced TLR4/NLRP3 Neuroinflammatory Response in Microglial Cells Promotes Leukocyte Infiltration Across the BBB vol.41, pp.1-2, 2016, https://doi.org/10.1007/s11064-015-1760-5
- Anti-Inflammatory and Antioxidant Mechanism of Tangeretin in Activated Microglia vol.11, pp.2, 2016, https://doi.org/10.1007/s11481-016-9657-x
- Clearance of cerebral Aβ in Alzheimer’s disease: reassessing the role of microglia and monocytes vol.74, pp.12, 2017, https://doi.org/10.1007/s00018-017-2463-7
- Matrix Metalloproteinase-3 is Key Effector of TNF-α-Induced Collagen Degradation in Skin vol.20, pp.20, 2014, https://doi.org/10.3390/ijms20205234
- Soluble iron accumulation induces microglial glutamate release in the spinal cord of sporadic amyotrophic lateral sclerosis vol.40, pp.2, 2020, https://doi.org/10.1111/neup.12632
- Neuroinflammation in Cerebral Ischemia and Ischemia/Reperfusion Injuries: From Pathophysiology to Therapeutic Strategies vol.23, pp.1, 2014, https://doi.org/10.3390/ijms23010014