DOI QR코드

DOI QR Code

Screening of salt-tolerance plants using transgenic Arabidopsis that express a salt cress cDNA library

Salt cress 유전자의 형질전환을 통한 내염성 식물체 선별

  • Baek, Dongwon (Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University) ;
  • Choi, Wonkyun (Bureau of Ecological Conservation Research, National Institute of Ecology) ;
  • Kang, Songhwa (Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University) ;
  • Shin, Gilok (Division of Applied Life Science (BK21plus program), Gyeongsang National University) ;
  • Park, Su Jung (Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University) ;
  • Kim, Chanmin (Division of Applied Life Science (BK21plus program), Gyeongsang National University) ;
  • Park, Hyeong Cheol (Bureau of Ecological Conservation Research, National Institute of Ecology) ;
  • Yun, Dae-Jin (Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University)
  • 백동원 (경상대학교 식물생명공학연구소) ;
  • 최원균 (국립생태원 생태보전연구본부) ;
  • 강송화 (경상대학교 식물생명공학연구소) ;
  • 신길옥 (경상대학교 응용생명과학부 (BK21plus program)) ;
  • 박수정 (경상대학교 식물생명공학연구소) ;
  • 김찬민 (경상대학교 응용생명과학부 (BK21plus program)) ;
  • 박형철 (국립생태원 생태보전연구본부) ;
  • 윤대진 (경상대학교 식물생명공학연구소)
  • Received : 2014.04.29
  • Accepted : 2014.05.26
  • Published : 2014.06.30

Abstract

Salt cress (Thellungiella halophila or Thellungiella parvula), species closely related to Arabidopsis thaliana, represents an extremophile adapted to harsh saline environments. To isolate salt-tolerance genes from this species, we constructed a cDNA library from roots and leaves of salt cress plants treated with 200 mM NaCl. This cDNA library was subsequently shuttled into the destination binary vector [driven by the cauliflower mosaic virus (CaMV) 35S promoter] designed for plant transformation and expression via recombination- assisted cloning. In total, 305,400 pools of transgenic BASTA-resistant lines were generated in Arabidopsis using either T. halophila or T. parvula cDNA libraries. These were used for functional screening of genes involved in salt tolerance. Among these pools, 168,500 pools were used for primary screening to date from which 7,157 lines showed apparent salt tolerant-phenotypes in the initial screen. A secondary screen has now identified 165 salt tolerant transgenic lines using 1,551 (10.6%) lines that emerged in the first screen. The prevalent phenotype in these lines includes accelerated seed germination often accompanied by faster root growth compared to WT Arabidopsis under salt stress condition. In addition, other lines showed non-typical development of stems and flowers compared to WT Arabidopsis. Based on the close relationship of the tolerant species to the target species we suggest this approach as an appropriate method for the large-scale identification of salt tolerance genes from salt cress.

식물생명공학 연구에 있어서 모델 식물인 Arabidopsis thaliana (애기장대)와 아주 유사한 염생 식물인 salt cress (Thellungiella halophila 또는 Thellungiella parvula)는 고염 스트레스에 대하여 강한 내성을 가지고 있다. 본 연구에서는 고염에 저항성을 가지는 유용유전자를 선별하기 위하여, 200 mM NaCl을 처리한 T. halophila 또는 T. parvula 식물로부터 mRNA를 분리하여 cDNA library를 작성하였다. Full length cDNA library를 Agrobacteria-methods 형질전환 방법에 필요한 binary vector pool을 작성하고 Arabidopsis에 형질전환 시켰다. 형질전환되어진 Arabidopsis를 항생제 Basta 선별을 통하여 형질전환체 pool을 구축하였다(305,400 종자). 이와 같은 방법을 통해 구축 되어진 pool중에서 168,500 종자를 이용하여 고염 스트레스 조건하에서 종자 발아율과 뿌리 생장 촉진되는 현상이 나타나는 내염성 형질전환체를 1차 선별하였다(7,157 개체; 4.24%). 1차 선별된 형질전환체 중에서 1,551개체를 이용하여 2차 선별을 수행하여 내염성 형질전환체 165 개체를 확보하였다(10.6%). 선별된 형질전환체 중 대부분 개체는 고염 스트레스에 대응하여 종자 발아 및 뿌리 생장 모두 야생형보다 촉진된 표현형을 보였다. 그 중 몇 몇의 형질전환체는 야생형에 비하여 특이적인 기관 발달 현상이 나타났다. 예를 들면, 꽃과 줄기의 발달이 야생형과는 다른 표현형을 보이는 형질전환체가 선별되었다. 이렇게 스트레스에 내성을 가지는 형질전환체로부터 유전자 분리 방법을 통하여 해당 유용유전자를 확보할 수가 있다. 본 연구에서는 향후 halopyte 식물체를 이용하여 고염 뿐만 아니라 다양한 환경스트레스(건조, 냉해, 고열, 호르몬 등) 신호전달에 관여하는 유용유전자를 보다 쉽게 확보하는 방법을 제시함으로서, 환경재해극복에 관여하는 신호전달 기작을 보다 쉽게 이해할 수 있을 것으로 사료된다.

Keywords

References

  1. Bent AF (2000) Arabidopsis in planta transformation. Uses, mechanisms, and prospects for transformation of other species. Plant Physiol 124:1540-1547 https://doi.org/10.1104/pp.124.4.1540
  2. Bliss RD, Platt-Aloia KA, Thomson WW. 1986. Osmotic sensitivity in relation to salt sensitivity in germinating barley seeds. Plant, Cell and Environment 9:721-725 https://doi.org/10.1111/j.1365-3040.1986.tb02104.x
  3. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735-743 https://doi.org/10.1046/j.1365-313x.1998.00343.x
  4. Cushman JC, Bohnert HJ (2000) Genomic approaches to plant stress tolerance. Curr Opin Plant Biol 3:117-124 https://doi.org/10.1016/S1369-5266(99)00052-7
  5. Dassanayake M, Oh D-H, Hass J, Hernandez A, Hong H, Ali S, Yun D-J, Bressan RA, Zhu J-K, Bohnert HJ, Cheeseman JM (2013) The genome of extremophile crucifer Thellungiella parvula. Nature Genetics 43:913-918
  6. Drews GN, Bowman JL, Meyerowitz EM (1991) Negative regulation of the Arabidopsis homeotic gene AGAMOUS by the APETALA2 product. Cell 65:991-1002 https://doi.org/10.1016/0092-8674(91)90551-9
  7. Du J, Huang Y-P, Xi J, Cao M-J, Ni W-S, Chen X, Zhu J-K, Oliver DJ, Xiang C-B (2008) Functional gene-mining for salttolerance genes with the power of Arabidopsis. Plant J 56:653-664 https://doi.org/10.1111/j.1365-313X.2008.03602.x
  8. Finkelstein RR, Gampala SSL, Rock CD (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell(Suppl) 14:S15-S45
  9. Gong Q, Li P, Ma S, Indu Rupassara S, Bohnert HJ (2005) Salinity stress adaptation competence in the extremophile Thellungiella halophila in comparison with its relative Arabidopsis thaliana. Plant J 44:826-839 https://doi.org/10.1111/j.1365-313X.2005.02587.x
  10. Inan G, Zhang Q, Li P, Wang Z, Cao Z, Zhang H, Zhang CQ, Quist TM, Goodwin SM, Zhu JH, Shi HJ, Damsz B, Carbaji T, Gong Q, Ma S, Fredricksen M, Galbraith DW, Jenks MA, Rhodes D, Hasegawa PM, Bohnert HJ, Joly RJ, Bressan RA, Zhu J-K (2004) Salt Cress. A Halophyte and Cryophyte Arabidopsis Relative Model System and Its Applicability to Molecular Genetic Analyses of Growth and Development of Extremophiles. Plant Physiol 135:1718-1737 https://doi.org/10.1104/pp.104.041723
  11. Kim WY, Zahir Ali, Park HJ, Park SJ, Cha JY, Javier Perez- Hormaeche, Francisco Javier Quinter, Shin G, Kim MR, Zhang Qiang, Li Ning, Park HC, Lee SY, Ray A. Bressan, Jose M. Pardo, Hans J. Bohnert & Yun DJ (2013) Release of SOS2 kinase from sequestration with GIGANTEA determines salt tolerance in Arabidopsis. Nature Communications 4:1352 https://doi.org/10.1038/ncomms2357
  12. Krysan PJ, Young JC, Sussman MR (1999) T-DNA as an Insertional mutagen in Arabidopsis. Plant Cell 11:2283-2290 https://doi.org/10.1105/tpc.11.12.2283
  13. Lei Z-Y, Zhao P, Cao M-J, Cui R, Chen Z, Zing L-Z, Zhang Q-F, Oliver DJ, Xiang C-B (2007) High-throughpur binary vectors for plant gene function analysis. J Integr Plant Biol 49:556-567 https://doi.org/10.1111/j.1744-7909.2007.00442.x
  14. Munns R, Tester M. 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology 59:651-681. https://doi.org/10.1146/annurev.arplant.59.032607.092911
  15. Ni WS, Lei Z-Y, Chen X, Oliver D-J, Xiang C-B (2007) Construction of a plant transformation-ready expression cDNA library for Thellungiella halophila using recombination cloning. J. Integr. Plant Biol 49:1313-1319
  16. Papdi C, Abrham E, Joseph MP, Popescu C, Koncz C, Szabados L (2008) Functional identification of Arabidopsis stress regulatory genes using the controlled cDNA overexpression system. Plant Physiol 147:528-542 https://doi.org/10.1104/pp.108.116897
  17. Parvaiz A, Satyawati S (2008) Salt stress and phyto-biochemical responses of plants –a review. Plant Soil Environ. 54:88-99
  18. Vallejo AJ, Yanovsky MJ, Botto JF (2010) Germination variation in Arabidopsis thaliana accessions under moderate osmotic and salt stresses. Ann of Botany 1-10
  19. Wu HJ, Zhang Z, Wang JY, Oh DH, Dassanayake M, Liu B, Huang Q, Sun HX, Xia R, Wu Y, Wang YN, Yang Z, Liu Y, Zhang W, Zhang H, Chu J, Yan C, Fang S, Zhang J, Wang Y, Zhang F, Wang G, Lee SY, Cheeseman JM, Yang B, Li B, Min J, Yang L, Wang J, Chu C, Chen SY, Bohnert HJ, Zhu JK, Wang XJ, Xie Q (2012) Insights into salt tolerance from the genome of Thellungiella salsuginea. Proc Natl Acad Sci USA. 109:12219-12224 https://doi.org/10.1073/pnas.1209954109
  20. Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory newtorks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 53:781-803
  21. Yanofsky MF, Ma H, Bowman JL, Drews GN, Feldmann KA, Dyerowitz M (1990) The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature 346:35-39 https://doi.org/10.1038/346035a0
  22. Yun D-J (2005) Molecular mechanism of plant adaption to high salinity. Korean J Plant Biotechnol 32:1-14 https://doi.org/10.5010/JPB.2005.32.1.001
  23. Zhu J-K, Liu J, Xiong L (1998) Genetic analysis of salt tolerance in Arabidopsis: Evidence for a critical role of Potassium nutrition. Plant Cell 10:1181-1191 https://doi.org/10.1105/tpc.10.7.1181
  24. Zhu J-K (2001) Plant salt tolerance. Trends Plant Sci 6:66-71
  25. Zhu J-K (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247-273 https://doi.org/10.1146/annurev.arplant.53.091401.143329