DOI QR코드

DOI QR Code

New embryogenesis from atypical bodies and plant regeneration from long-term subcultured embryogenic callus in rose

장기간 계대배양 된 장미 배발생 캘러스로부터 식물체 재분화 및 비정형체로부터 새로운 배발생캘러스 재생

  • Lee, Su Young (National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Do, Kyoung Ran (National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Cheon, Kyeong-Seong (National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Kim, Won Hee (National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Kwon, O Hyeon (National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Lee, Hye Jin (National Institute of Horticultural & Herbal Science, Rural Development Administration)
  • 이수영 (농촌진흥청 국립원예특작과학원) ;
  • 도경란 (농촌진흥청 국립원예특작과학원) ;
  • 천경성 (농촌진흥청 국립원예특작과학원) ;
  • 김원희 (농촌진흥청 국립원예특작과학원) ;
  • 권오현 (농촌진흥청 국립원예특작과학원) ;
  • 이혜진 (농촌진흥청 국립원예특작과학원)
  • Received : 2014.05.12
  • Accepted : 2014.06.20
  • Published : 2014.06.30

Abstract

Long-term subcultured rose embryogenic calluses, which had been maintained for more than 5 to 6 years since the first embryogenesis from calluses induced from in vitro roots of rose, were identified as potential material for the development of transgenic plants. The first embryogenic calluses from 'Sweet Yellow' and two breeding lines (KR056002 and KR056006) were obtained in 2007 and 2009, respectively. Subsequently, we found that plants regenerated from long-term embryogenic calluses (LEC). Whereas the LEC from 'Sweet Yellow' takes 3 to 4 months to regenerate plants, those of the two breeding lines take 4 to 5 months. This period of time is the same as that taken for plants to regenerate from the first embryogenic callus. New embryogenesis was observed from atypical bodies (ABs) that appeared during the process of long-term subculture. We found that it is possible to use the AB as a material for new embryogenesis.

장미 형질전환체를 개발하기 위한 유전자 도입 재료로써 5 ~ 6년 이상 장기간 유지 증식된 장미 배발생캘러스의 이용 가능성이 확인되었다. 2007년 및 2009년에 각각 처음으로 기내 뿌리유래 캘러스로부터 유도된 후 유지 증식배지에서 계대배양 해 온 장미 '스위트 옐로우' 품종 및 KR056002와 KR056006 2계통 유래 배발생캘러스로부터 식물체의 재분화 능력을 확인하였다. 장기간 계대배양 된 배발생캘러스로부터 신초의 모습을 갖춘 식물체로 재분화 되기까지 소요기간 및 재분화율은 '스위트옐로우' 품종은 3 ~ 4개월, KR056002 및 KR056006은 4 ~ 5개월로, 이들 배발생캘러스가 기내뿌리로부터 처음으로 배발생 된 후 최초 신초 재분화 때와 동일한 양상이었다. 또한 체세포배발생캘러스의 유지 증식을 위한 계대배양과정에서 발생되는 비정형체 위에 새로운 배 및 배발생캘러스가 유도되었다. 이 비정형체는 새로운 배발생캘러스를 유도할 수 있는 재료로서 이용될 수 있을 것이다.

Keywords

References

  1. Borrelli GM, Lupotto E, Locatelli F, Wittmer G (1991) Long-term optimized ermbryogenic cultures in drum-wheat (Triticum drum Desf). Plant Cell Rep 10:296-299
  2. Breton D, Harvengt L, Trontin JF, Bouvet A, Favre JM (2006) Long-term subculture randomly affects morphology and subsequent maturation of early somatic embryos in maritime pine. Plant Cell Tiss Organ Cult (2006) 87:95-108 https://doi.org/10.1007/s11240-006-9144-9
  3. Brisibe EA, Miyake H, Taniguchi T, Maeda E (1994) Regulation of somatic embryogenesis in long-term callus-cultures of sugarcane (Saccharum officinarum L.). New Phytol 126: 301-307 https://doi.org/10.1111/j.1469-8137.1994.tb03949.x
  4. Chai M, Jia YF, Chen S, Gao ZS, Wang HF, Liu LL, Wang PJ, Hou DQ (2011) Callus induction, plant regeneration, and long-term maintenance of embryogenic cultures in Zoysia matrella [L.] Merr. Plant Cell Tiss Organ Cult 104:187-192 https://doi.org/10.1007/s11240-010-9817-2
  5. Dohm A, Ludwig C, Nehring K, Debener T (2001) Somatic embryogenesis in roses. Acta Hort 547:341-347
  6. Dubois LAM, de Vries DP (1995) Preliminary report on the direct regeneration of adventitious buds on leaf explants of in vivo grown glasshouse rose cultivars. Garrenbauwissenschaft 60: 249-253
  7. Firozabody E, Moy Y, Courtneygutterson, N, Robinson K (1994) Regeneration of transgenic rose (Rosa hybrida) plants from embryogenic tissues. Bio/Technology 12:609-613 https://doi.org/10.1038/nbt0694-609
  8. Hsia C, Korban SS (1996) Organogenesis and somatic embryogenesis in callus of Rosa hybrida and Rosa chinensis minima. Plant Cell Tiss Org Cult 44:1-6 https://doi.org/10.1007/BF00045906
  9. Hua YW, Huang TD, Huang HS (2010) Micropropagation of self-rooting juvenile clones by secondary somatic embryogenesis in Hevea brasiliensis. Plant breeding 129:202-207 https://doi.org/10.1111/j.1439-0523.2009.01663.x
  10. Ibrahim R, Debergh PC (2001) Factors controlling high efficiency adventitious bud formation and plant regeneration in vitro leaf explants of roses (Rosa hybrida L.). Sci Hort 88:41-57 https://doi.org/10.1016/S0304-4238(00)00189-8
  11. Kamo K, Jones B, Bolar J, Smith F (2005) Regeneration from long-term embryogenic callus of the Rosa hybrida cultivar Kardinal. In Vitro Cell Dev Biol Plant 41:32-36 https://doi.org/10.1079/IVP2004599
  12. Kim CK, Chung JD, Lee SO, Oh JY (2003) Somatic embryogenesis from in vitro grown leaf explants of Rosa hybrida L. J Plant Biotechnol 5:169-172
  13. Lambe P, Mutambel HSN, Deltour R, Dinant M (1999) Somatic embryogenesis in pearl millet (Pennisetum glaucum): Strategies to reduce genotype limitation and to maintain long-term totipotency. Plant Cell Tiss Organ Cult 55:23-29
  14. Lee SY (2013) Review in research and the related industry on the recent transgenic flowers. In: KBCH, KRIBB (eds) Biosafety white paper 2013:260-269
  15. Lee SY, Han BH, Kim YS (2010a) Somatic embryogenesis and shoot development in Rosa hybrida L. Acta Hort 870:219-225
  16. Lee SY, Jung JH, Kim JH, Han BH (2008) In vitro multiple shoot proliferation and plant regeneration in rose. J Plant Biotechnol 35:223-228 https://doi.org/10.5010/JPB.2008.35.3.223
  17. Lee SY, Lee JL, Kim JH, Ko JY, Kim ST, Lee EK, Kim WH, Kwon OH (2013) Production of Somatic Embryo and Transgenic Plants Derived from Breeding Lines of Rosa hybrida L. Hort Environ Biotechnol 54:172-176 https://doi.org/10.1007/s13580-013-0085-z
  18. Lee SY, Lee JL, Kim WH, Kim ST, Lee EK (2010b) Acquirement of transgenic rose plants from embryogenic calluses via Agrobacterium tumefaciens. J Plant Biotechnol 37:511-516 https://doi.org/10.5010/JPB.2010.37.4.511
  19. Li, X., S.F. Krasnyanski, and S.S. Korban. 2002. Somatic embryogenesis, secondary somatic embryogenesis, and shoot organogenesis in Rosa. J. Plant Physiol. 159:313-319. https://doi.org/10.1078/0176-1617-00688
  20. Liu L, Fan XL, Zhang JW, Yan ML, Bao MZ (2009) Long-term cultured callus and the effect factor of high-frequency plantlet regeneration and somatic embryogenesis maintenance in Zoysia japonica In Vitro Cell Dev Biol_Plant 45:673-680 https://doi.org/10.1007/s11627-009-9226-6
  21. Marchant R, Davey MR, Lucas JA, Power JB (1996) Somatic embryogenesis and plant regeneration in floribunda rose (Roas hybrida L.) cvs. Trumpeter and Glad Tidings. Plant Sci 120:95-105 https://doi.org/10.1016/S0168-9452(96)04479-2
  22. Motoike SY, Skirvin RM, Norton MA, Otterbacher AG (2001) Somatic embryogenesis and long term maintenance of embryogenic lines lines from fox grapes. Plant Cell Tiss Organ Cult 66:121-131 https://doi.org/10.1023/A:1010604628865
  23. Pati PK, Sharma M, Sood A, Ahuja PS (2004) Direct shoot regeneration from leaf explants of Rosa damascena Mill. In Vitro Cell Dev Biol Plant 40:192-195. https://doi.org/10.1079/IVP2003503
  24. Schenk RU, Hildebrandt AC (1972) Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can J Bot 50:199-204 https://doi.org/10.1139/b72-026
  25. Tanaka Y (2009) Flower color modification by genetic engineering. 2009 Plant Science Conference: 9
  26. Tian LN, Brown DCW, Watson E (2002) Continuous long-term somatic embryogenesis in alfalfa. In Vitro Cell Dev Biol Plant 38:279-284 https://doi.org/10.1079/IVP2001286
  27. Wang HC, Chen JT, Chang WC (2010) Morphogenetic routes of long-term embryogenic callus culture of Areca catechu. Biologia Plantarum 54:1-5 https://doi.org/10.1007/s10535-010-0001-7
  28. Zakizadeh H, Debener T, Sriskandarajah S, Frello S, Serek M (2008) Regeneration of miniature potted rose (Rosa hybrida L.) via somatic embryogenesis. Eur J Hort Sci 73:111-117