DOI QR코드

DOI QR Code

The impact of substrate bias on the Z-RAM characteristics in n-channel junctionless MuGFETs

기판 전압이 n-채널 무접합 MuGFET 의 Z-RAM 특성에 미치는 영향

  • Lee, Seung-Min (Department of Electronics Engineering, Incheon National University) ;
  • Park, Jong-Tae (Department of Electronics Engineering, Incheon National University)
  • Received : 2014.03.17
  • Accepted : 2014.04.22
  • Published : 2014.07.31

Abstract

In this paper, the impact of substrate bias($V_{BS}$) on the zero capacitor RAM(Z-RAM) in n-channel junctionless multiple gate MOSFET(MuGFET) has been analyzed experimentally. Junctionless transistors with fin width of 50nm and 1 fin exhibits a memory window of 0.34V and a sensing margin of $1.8{\times}10^4$ at $V_{DS}=3.5V$ and $V_{BS}=0V$. As the positive $V_{BS}$ is applied, the memory window and sensing margin were improved due to an increase of impact ionization. When $V_{BS}$ is increased from 0V to 10V, not only the memory window is increased from 0.34V to 0.96V but also sensing margin is increased slightly. The sensitivity of memory window with different $V_{BS}$ in junctionless transistor was larger than that of inversion-mode transistor. A retention time of junctionless transistor is better than that of inversion-mode transistor due to low Gate Induced Drain Leakage(GIDL) current. To evaluate the device reliability of Z-RAM, the shifts in the Set/Reset voltages and current were measured.

본 연구에서는 다중게이트 구조인 n-채널 무접합(junctionless) MuGFET 의 기판 전압이 zero capacitor RAM(Z-RAM) 특성에 미치는 영향에 대하여 실험적으로 분석하였다. 핀 폭이 50nm 이고, 핀 수가 1인 무접합 트랜지스터의 드레인에 3.5V, 기판에 0V 가 인가된 경우, 메모리 윈도우는 0.34V 이며 센싱 마진 은 $1.8{\times}10^4$ 의 특성을 보였다. 양의 기판 전압이 인가되면 충격 이온화가 증가하여 메모리 윈도우와 센싱 마진 특성이 개선되었다. 기판 전압이 0V에서 10V로 증가함에 따라, 메모리 윈도우 값은 0.34V 에서 0.96V 로 증가하였고, 센싱 마진 또한 소폭 증가하였다. 기판 전압에 따른 무접합 트랜지스터의 메모리 윈도우 민감도가 반전 모드 트랜지스터 보다 큰 것을 알 수 있었다. Gate Induced Drain Leakage(GIDL) 전류가 작은 무접합 소자의 경우 반전모드 소자에 비해서 보유시간 특성이 좋을 것으로 사료된다. Z-RAM의 동작 신뢰도 평가를 위해서 셋/리셋 전압 및 전류의 변화를 측정하였다.

Keywords

References

  1. Parkinson. P.S., Settlemyer. K., McStay. I., Park. D.G., Ramachandran. R., Chudzik. M., et. al., "Novel techniques for scaling deep trench DRAM capacitor technology to 0.11${\mu}m$ and beyond", in Proc. Symp. VLSI Technol., pp. 21-24, 2003.
  2. Kotechki. D.E., Daniecki. J.D., Shen. H., Laibowitz. R.B., Saenger. K.L., Lian. J.J., et. al., "(Ba,Sr)$TiO_{3}$ dielectrics for future stacked-capacitor DRAM", IBM Journal of Research and Development, vol. 43, no. 3, pp. 367-392, 1999. https://doi.org/10.1147/rd.433.0367
  3. Okhonin. S., Nagoga. M., Sallese. J.M., and Fazan. P., "A Capacitor-less 1T-DRAM cell", IEEE Electron Device Letters, vol. 23, no. 2, pp. 85-87, 2002. https://doi.org/10.1109/55.981314
  4. Yoshida. E., and Tanaka. T., "A capacitorless 1T-DRAM technology using Gate-Induced Drain-Leakage (GIDL) current for low-power and high-speed embedded memory", IEEE Transaction on Electron Devices, vol. 53, no. 4, pp. 692-697, 2006. https://doi.org/10.1109/TED.2006.870283
  5. Okhonin. S., Nagoga. M., Carman. E., Beffa. R., Faraoni. E., "New generation of Z-RAM", in Proc. IEDM, pp. 925- 928, 2007.
  6. Bawedin. M., Cristoloveanu. S., and Flandre. D., "A capacitorless 1T-DRAM on SOI based on dynamic coupling and double-gate operation", IEEE Electron Device Letters, vol. 29, no. 7, pp. 795-798, 2008. https://doi.org/10.1109/LED.2008.2000601
  7. Aoulaiche. M., Collaert. N., Degraeve. R., Lu. Z., Wachter. B.D., Groeseneken. G., Jurczak. M., and Altimime. L,. "BJT-mode endurance on 1T-DRAM bulk FinFET device", IEEE Electron Device Letters, vol. 31, no. 12, pp. 1380- 1382, 2010. https://doi.org/10.1109/LED.2010.2079313
  8. Andrade. M.G.C., Martino. J.A., Aoulaiche. M., Collaert. N., Simoen. E., and Claeys. C., "The impact of back bias on the floating body effect in UTBOX SOI devices for 1T-FBRAM memory application", in Proc. 8th ICCDCS, pp. 1-4, 2012.
  9. Nicoletti. T., Sasaki. K.R.A., Aoulaiche. M., Simoen. E., Claeys. C., and Martino. J.A., "Experimental and simulation of 1T-DRAM trend with the gate length on UTBOX devices", in Proc. Conf. EUROSOI, pp. 1-2, 2013.
  10. Sasaki. K.R.A., Nissimoff. A., Almeida. L.M., Aoulaiche. M., Simoen. E., Claeys. C., and Martino. J.A., "Improvement of retention time using pulsed back gate bias on UTBOX SOI memory cell", in Proc. Conf. EUROSOI, pp. 1-2, 2013.
  11. Lee. C.W., Yan. R., Ferain. I., Kranti. A., Dehdashti. N.A., Razavi. P., Yu. R., and Colinge. J.P., "Nanowire zero-capacitor DRAM transistors with and without junctions", in Proc. Conf. 10th IEEE-NANO, pp. 242-245, 2010.
  12. Lee. S.M, and Park. J.T., "Steep subthreshold slope at elevated temperature in junctionless and inversion-mode MuGFET", JKIICE, vol. 17, no. 9, pp.2133-2138, 2013. https://doi.org/10.6109/jkiice.2013.17.9.2133
  13. Lee. C.W., Nazarov. A.N., Ferain. I., Dehdashti. N.A., Yan. R., Razavi. P., Yu. R., Doria. R.T., and Colinge. J.P., "Low subthreshold slope in junctionless multigate transistor", Applied Physics Letters, vol. 96, pp. 102106-4102107, 2010. https://doi.org/10.1063/1.3358131
  14. Park. S.J., Jeon. D.Y., Montes. L., Barraud. S., Kim. G.T., Ghihaudo. G., "Back biasing effects in tri-gate junctionless transistors", Solid-State Electronics, vol. 89, no. 9, pp. 74-79, 2013.
  15. Lee. C.W., Borne. A., Ferain. I., Afzalian. A., Yan. R., Dehdashti. N., et. al., "High temperature performance of silicon junctionless MOSFETs", IEEE Transaction on Electron Devices, vol. 57, no. 3, pp. 620-625, 2010. https://doi.org/10.1109/TED.2009.2039093
  16. Nicoletti. T., Aoulaiche. M., Almeida. L.M., dos Santos. S.D., Martino. J.A., Veloso, A., Jurczak. M., Simoen. E., and Claeys. C., "The dependence of retention time on gate length in UTBOX FBRAM with different source/drain junction engineering", IEEE Electron Device Letters, vol. 33, no. 7, pp. 940-942, 2012. https://doi.org/10.1109/LED.2012.2196968
  17. Onal. C., Woo. R., Serene Koh. H.Y., Griffin. P.B., and Plummer. J.D., "A novel depletion-IMOS (DIMOS) device with improved reliability and reduced operating voltage", IEEE Electron Device Letters, vol. 29, no. 1, pp. 64-67, 2009.