DOI QR코드

DOI QR Code

Characteristics of the Maximum Glow Intensity According to the Thermoluminescent Phosphors used in the Absorbed Dose Measurement of the Radiation Therapy

방사선치료 선량 측정에 사용되는 열형광체에 따른 최대 형광 강도 특성

  • Kang, Suman (Department of Radiological Science, Dong-eui University) ;
  • Im, Inchul (Department of Radiological Science, Dong-eui University) ;
  • Park, Cheolwoo (Department of Radiological Technology, Dong-eui Institute of Technology) ;
  • Lee, Mihyeon (Department of Radiation Safety Management, Dong-pusan College) ;
  • Lee, Jaeseung (Department of Radiological Science, Dong-eui University)
  • 강수만 (동의대학교 방사선학과) ;
  • 임인철 (동의대학교 방사선학과) ;
  • 박철우 (동의과학대학교 방사선학과) ;
  • 이미현 (동부산대학교 방사선안전관리실) ;
  • 이재승 (동의대학교 방사선학과)
  • Received : 2014.05.21
  • Accepted : 2014.06.25
  • Published : 2014.06.30

Abstract

The purpose of this study were to analyze the characteristic of the glow curves in order to the glow temperature of the thermoluminescent dosimeters (TLDs) for the absorbed dose measurement of the radiation therapy. In this study, we was used the TLDs of the LiF:Mg${\cdot}$Ti, LiF:Mg${\cdot}$Cu${\cdot}$P, $CaF_2$:Dy, $CaF_2$:Mn (Thermo Fisher Scientific Inc., USA). The source-to-solid dry phantom (RW3 slab, IBA Dosmetry, Germany) surface distance was set at 100 cm, and the exposure dose of 100 MU (monitor unit) was used 6- and 15-MV X-rays, and 6- and 12-MeV electron beams in the reference depth, respectively. After the radiations exposure, we were to analyze the glow curves by using the TL reader (Hashaw 3500, Thermo Fisher Scientific Inc., USA) at the fixed heating rate of $15^{\circ}C/sec$ from $50^{\circ}C$ to $260^{\circ}C$. The glow peaks, the trapping level in the captured electrons and holes combined with the emitted light, were discovered the two or three peak. When the definite increasing the temperature of the TLDs, the maximum glow peak representing the glow temperature was follow as; $LiF:Mg{\cdot}Ti$: $185.5{\pm}1.3^{\circ}C$, $LiF:Mg{\cdot}Ti$: $135.0{\pm}5.1^{\circ}C$, $CaF_2$:Dy: $144.0{\pm}1.6^{\circ}C$, $CaF_2$:Mn: $294.3{\pm}3.8^{\circ}C$, respectively. Because the glow emission probability of the captured electrons depend on the heating temperature after the exposure radiation, TLDs by applying the fixed heating rate, the accuracy of measurement will be able to improve within the absorbed dose measurement of the radiation therapy.

본 연구는 방사선 치료 영역의 선량 측정을 위하여 상용화된 열형광선량계의 가열 온도에 따른 형광 곡선의 특성을 분석하였다. 본 연구에 사용된 열형광선량계는 LiF:Mg${\cdot}$Ti, LiF:Mg${\cdot}$Cu${\cdot}$P, $CaF_2$:Dy, $CaF_2$:Mn(Thermo Fisher Scientific Inc., USA)이었다. 선원과 고체 팬텀 표면(RW3 slab, IBA Dosimetry, Germany)간 거리를 100cm로 하여 기준점 깊이에서 6MV, 15MV X선과 6MeV, 12MeV 전자선을 각각 100MU 조사하였다. 방사선 조사 후 열형광 판독기(Hashaw 3500, Thermo Fisher Scientific Inc., USA)를 사용하여 $50^{\circ}C$에서 $260^{\circ}C$까지 $15^{\circ}C/sec$의 가온율로 가열하여 형광 곡선을 분석하였다. 트랩 준위에 포획된 전자가 정공과 결합하면서 빛을 방출하는 형광 피크(glow peak)는 2개 또는 3개의 피크가 나타났으며 방사선 조사 후 TLD의 온도를 일정하게 증가시켰을 때 최대 형광 피크를 나타내는 형광 온도의 경우 각각의 에너지에 따라 $LiF:Mg{\cdot}Ti$ 선량계는 $185.5{\pm}1.3^{\circ}C$, $LiF:Mg{\cdot}Ti$ 선량계는 $135.0{\pm}5.1^{\circ}C$, $CaF_2$:Dy 선량계는 $144.0{\pm}1.6^{\circ}C$, $CaF_2$:Mn 선량계는 $294.3{\pm}3.8^{\circ}C$ 근처에서 최대 형광 피크를 각각 나타났다. 방사선 조사 후 포획 전자의 형광 방출 확률은 가열 온도에 의존하게 되므로 방사선 치료 영역의 선량 측정에서 방사선 조사 후 열형광선량계에 일정한 가온율을 적용함으로써 고유한 물리적 특성에 따른 측정 정확도를 향상시킬 수 있을 것으로 판단되었다.

Keywords

References

  1. A. C. Lewandowski, S. W. McKeever, "Generalized description of thermally stimulated processes without the quasiequilibrium approximation", Phys. Rev. B. Condens. Matter, Vol. 43, No. 10, pp. 8163-8178, 1991. https://doi.org/10.1103/PhysRevB.43.8163
  2. A. Mandowski, "The theory of thermoluminescence with an arbitrary spatial distribution of traps", Radiat. Prot. Dosimetry, Vol. 100, No. 1-4, pp. 115-118, 2002. https://doi.org/10.1093/oxfordjournals.rpd.a005825
  3. A. Hernandez, E. Cruz-Zaragoza, A. Negron-Mendoza, S. Ramos-Bernal, "Dependence of thermoluminescence response of calcium sulphate activated by dysprosium on the temperature irradiation", Radiat. Meas., Vol. 38, No. 4-6, pp. 431-433, 2004. https://doi.org/10.1016/j.radmeas.2003.12.021
  4. V. Correcher, J. M. Gomez-Ros, J. Garcia-Guinea, P. L. Martin, A. Delgado, "Thermal stability of the thermoluminescence trap structure of bentonite", Radiat. Prot. Dosimetry, Vol. 119, No. 1-4, pp. 176-179, 2006. https://doi.org/10.1093/rpd/nci613
  5. J. Y. Je, E. B. Kang, "The effects of magnetic field on TLD glow curve", J. korean Soc. Radiol., Vol. 7, No. 6, pp. 415-418, 2013. https://doi.org/10.7742/jksr.2013.7.6.415
  6. L. Karsch, E. Beyreuther, T. Burris-Mog, S. Kraft, C. Richter, K. Zeil, J. Pawelke, "Dose rate dependence for different dosimeters and detectors: TLD, OSL, EBT films, and diamond detectors", Med. Phys., Vol. 39, No. 5, pp. 2447-2455, 2012. https://doi.org/10.1118/1.3700400
  7. S. B. Scarboro, D. S. Followill, R. M. Howell, S. F. Kry, "Variations in photon energy spectra of a 6 MV beam and their impact on TLD response", Med. Phys., Vol. 38, No. 5, pp. 2619-2628, 2011. https://doi.org/10.1118/1.3575419
  8. M. Kumar, R. K. Kher, G. Sahni, K. Chhokra, "Studies on the response of the TLD badge for high-energy photons", Radiat. Prot. Dosimetry, Vol. 128, No. 3, pp. 266-273, 2008.
  9. J. H. Burnett, R. Gupta, U. Griesmann, "Absolute refractive indices and thermal coefficients of CaF2, SrF2, BaF2, and LiF near 157 nm", Appl. Opt., Vol. 41, No. 13, pp. 2508-2513, 2002. https://doi.org/10.1364/AO.41.002508
  10. M. Tsuda, T. Katsurada, F. Ando, F. Kawamata, S. Yunogami, "A study of two kinds of thermoluminescent dosimeters; CaF2:Tm and CaSO4:Dy in LiF", Strahlentherapie., Vol. 158, No. 9, pp. 563-569, 1982.
  11. M. Tsuda, Y. Ohizumi, T. Mori, "LiF and CaF2:Dy thermoluminescent dosimeters", Strahlentherapie., Vol. 156, No. 10, pp. 708-713, 1980.
  12. J. Izewska, P. Andreo, "The IAEA/WHO TLD postal programme for radiotherapy hospitals", Radiother. Oncol., Vol. 54, No. 1, pp. 65-72, 2000. https://doi.org/10.1016/S0167-8140(99)00164-4
  13. A. Dutreix, E. van der Schueren, S. Derreumaux, J. Chavaudra, "Preliminary results of a quality assurance network for radiotherapy centres in Europe", Radiother. Oncol., Vol. 29, No. 2, pp. 97-101, 1993. https://doi.org/10.1016/0167-8140(93)90232-W
  14. I. Grmola, J. Dam, J. Isern-Verdum, J. Verstraete, R. Reymen, A. Dutreix, B. Davis, D. Huyskens, "External audits of electron beams using mailed TLD dosimetry: preliminary results", Radiother. Oncol., Vol.58, No. 2, pp. 163-168, 2001. https://doi.org/10.1016/S0167-8140(00)00265-6
  15. A. S. Pradhan, "Effect of heating rate on the responses of CaF2:Cu, CaF2:Tm, CaF2:Dy and CaF2:Mn", Radiat. Prot. Dosimetry, Vol. 100, No. 1-4, pp. 289-292, 2002. https://doi.org/10.1093/oxfordjournals.rpd.a005870
  16. G. Blasse, B. C. Grabmaier, Luminescent Materials, X-Ray Phosphors and Scintillators (Springer, Berlin, Heidelberg), pp. 170-194, 1994.
  17. Y. S. Horowitz, L. Oster, H. Datz, "The thermoluminescence dose-response and other characteristics of the high-temperature TL in LiF:Mg,Ti (TLD-100)", Radiat. Prot. Dosimetry, Vol. 124, No. 2, pp. 191-205, 2007. https://doi.org/10.1093/rpd/ncm241
  18. Y. S. Horowitz, A. Horowitz, L. Oster, S. Marino, H. Datz, M. Margaliot, "Investigation of the ionisation density dependence of the glow curve characteristics of LIF:MG,TI (TLD-100)", Radiat. Prot. Dosimetry, Vol. 131, No. 4, pp. 406-413, 2008. https://doi.org/10.1093/rpd/ncn197
  19. J. A. Harvey, N. P. Haverland, K. J. Kearfott, "Characterization of the glow-peak fading properties of six common thermoluminescent materials", Appl. Radiat. Isot., Vol, 68, No. 10, pp. 1988-2000, 2010. https://doi.org/10.1016/j.apradiso.2010.04.028
  20. D. Yossian, S. Gimplin, S. Mahajna, Y. S. Horowitz, "Peak shape analysis of isolated peak 5 in LiF:Mg.Ti following $165^{\circ}C$ post-irradiation annealing", Radiat. Prot. Dosimetry, Vol. 65, No. 1, pp. 173-178, 1996. https://doi.org/10.1093/oxfordjournals.rpd.a031615
  21. ICRU, "Prescribing, recording and reporting photon beam therapy", Report No. 50, Interntional Commision on Radiation Units and Measurements, Besthesda, M. D., 1993.
  22. AAPM, "Quality assurance for clinical radiotherapy treatment planning", Report of the American Association of Physicists in Medicine Radiation Therapy Committee Task Group No. 53, Med. Phys., Vol. 25, pp.1773-1829, 1998. https://doi.org/10.1118/1.598373
  23. AAPM, "Protocol for clinical reference dosimetry of high-energy photon and electron beams", Report of the American Association of Physicists in Medicine Radiation Therapy Committee Task Group No. 51, Med. Phys., Vol. 26, pp.1847-1870. 1999. https://doi.org/10.1118/1.598691
  24. IAEA, "Absorbed dose determination in external beam radiotherapy: An international Code of Practice for dosimetry based on standards of absorbed dose to water", IAEA Technical Report Series 398, International Atomic Energy Agency, Vienna, Austria, 2000.
  25. J. Izewska, P. Andreo, S. Vatnitsky, K. R. Shortt, "The IAEA/WHO TLD postal dose quality audits for radiotherapy: a perspective of dosimetry practices at hospitals in developing countries", Radiother. Oncol., Vol. 69, No. 1, pp.91-97, 2003. https://doi.org/10.1016/S0167-8140(03)00245-7
  26. E. Cruz-Zaragoza, P. R. Gonzalez, J.Azorin , C. Furetta, "Heating rate effect on thermoluminescence glow curves of LiF:Mg,Cu,P+PTFE phosphor", Appl. Radiat. Isot., Vol. 69, No. 10, pp.1369-1373, 2011. https://doi.org/10.1016/j.apradiso.2011.05.033
  27. ICRP, "Conversion Coefficients for use in Radiological Protection against External Radiation", Publication No. 74, Ann. ICRP., Vol. 26, 1996.
  28. P. Bilski, "Lithium fluoride: from LiF:Mg,Ti to LiF:Mg,Cu,P", Radiat. Prot. Dosimetry, Vol. 100, No. 1-4, pp.199-206. 2002. https://doi.org/10.1093/oxfordjournals.rpd.a005847
  29. M. Budzanowski, "The influence of post-exposure heating on the stability of MCP-N (LiF:Mg,Cu,P) TL detectors", Radiat. Prot. Dosimetry, Vol. 101, No. 1-4, pp.257-260, 2002. https://doi.org/10.1093/oxfordjournals.rpd.a005980

Cited by

  1. 시간 경과에 따른 자기장 노출 유·무 환경에서 열형광선량계의 글로우 곡선 및 피폭 방사선량 분석 vol.16, pp.8, 2014, https://doi.org/10.5392/jkca.2016.16.08.419