• Title/Summary/Keyword: 액적이송 메커니즘

Search Result 4, Processing Time 0.032 seconds

Droplet Transport Mechanism on Horizontal Hydrophilic/Hydrophobic Surfaces (친수성/소수성 수평 표면상에서의 액적이송 메커니즘)

  • Myong, Hyon Kook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.6
    • /
    • pp.513-523
    • /
    • 2014
  • A fluid transport technique is a key issue for the development of microfluidic systems. In this study, the movement of a droplet on horizontal hydrophilic/hydrophobic surfaces, which is a new concept to transport droplets without external power sources that was recently proposed by the author, was simulated using an in-house solution code(PowerCFD). This code employs an unstructured cell-centered method based on a conservative pressure-based finite-volume method with interface capturing method(CICSAM) in a volume of fluid(VOF) scheme for phase interface capturing. The droplet transport mechanism is examined through numerical results that include velocity vectors, pressure contours, and total kinetic energy inside and around the droplet.

Transport Mechanism of an Initially Spherical Droplet on a Combined Hydrophilic/Hydrophobic Surface (친수성/소수성 복합표면상에서 초기 구형 액적의 이송 메커니즘)

  • Myong, Hyon Kook;Kwon, Young Hoo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.11
    • /
    • pp.871-884
    • /
    • 2015
  • Fluid transport is a key issue in the development of microfluidic systems. Recently, Myong (2014) has proposed a new concept for droplet transport without external power sources, and numerically validated the results for a hypothetical 2D shape, initially having a hemicylindrical droplet shape. Myong and Kwon (2015) have also examined the transport mechanism for an actual water droplet, initially having a 3D hemispherical shape, on a horizontal hydrophilic/hydrophobic surface, based on the numerical results of the time evolution of the droplet shape, as well as the total kinetic, gravitational, pressure and surface free energies inside the droplet. In this study, a 3D numerical analysis of an initially spherical droplet is carried out to establish a new concept for droplet transport. Further, the transport mechanism of an actual water droplet is examined in detail from the viewpoint of the capillarity force imbalance through the numerical results of droplet shape and various energies inside the droplet.

Numerical Analysis of the Movement of an Initially Hemispherical Droplet on Hydrophilic/Hydrophobic Surfaces (친수성/소수성 표면상에서 초기 반구형 액적의 움직임에 관한 수치해석)

  • Myong, Hyon Kook;Kwon, Young Hoo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.5
    • /
    • pp.405-414
    • /
    • 2015
  • Fluid transport is a key issue in the development of microfluidic systems. Recently, Myong (2014) has proposed a new concept for droplet transport without external power sources and numerically validated the results for a hypothetical 2D, initially having a hemicylindrical droplet. In this paper, the movement of an actual water droplet, initially having a 3D hemispherical shape, on horizontal hydrophilic/hydrophobic surfaces is simulated using a commercial computational fluid dynamics (CFD) package, Fluent, with VOF (volume of fluid) method. The results are compared with the 2D analysis of Myong (2014), and the transport mechanism for the actual water droplet is examined based on the numerical results of the time evolution of the droplet shape, as well as the total kinetic, gravitational, surface free and pressure energies inside the droplet.

Behavior of Liquid Droplet Driven by Capillarity Force Imbalance on Horizontal Surface Under Various Conditions (다양한 조건하에서 모세관력 불균형에 의해 구동되는 수평 표면 위의 액적 거동)

  • Myong, Hyon Kook;Kwon, Young Hoo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.4
    • /
    • pp.359-370
    • /
    • 2015
  • The present study aims to numerically investigate the behavior of liquid droplet driven by capillarity force imbalance on horizontal surfaces ranging from hydrophilic to hydrophobic, under various conditions. The droplet behavior has been simulated using an in-house solution code(PowerCFD), which employs an unstructured cell-centered method based on a conservative pressure-based finite-volume method with interface capturing method(CICSAM) in a volume of fluid(VOF) scheme for phase interface capturing. The detailed droplet behavior was obtained under various conditions for droplets with different initial shapes, contact angles and surface tension forces(or Bond number). The mechanism of droplet transport was examined using the numerical results on the droplet shapes.