DOI QR코드

DOI QR Code

Induced Autophagy Regulates Salmonella enterica serovar Typhimurium Infection in Murine Macrophage

쥐의 큰포식세포주에서 자가포식현상에 의한 Salmonella enterica serovar Typhimurium의 감염 조절

  • Lee, Sunhye (Medical and Bio-Materials Research Consortium, Kangwon National University) ;
  • Kim, Ju-Young (Department of Biological Sciences, Kangwon National University) ;
  • Lee, Hyo-Ji (Department of Biological Sciences, Kangwon National University) ;
  • Jung, Yu-Jin (Medical and Bio-Materials Research Consortium, Kangwon National University)
  • 이선혜 (강원대학교 의료.바이오신소재융복합연구사업단) ;
  • 김주영 (강원대학교 자연과학대학 생명과학과) ;
  • 이효지 (강원대학교 자연과학대학 생명과학과) ;
  • 정유진 (강원대학교 의료.바이오신소재융복합연구사업단)
  • Received : 2014.02.06
  • Accepted : 2014.03.06
  • Published : 2014.03.31

Abstract

Autophagy is one of the lysosomal degradation pathways to maintain cellular homeostasis. The damaged proteins or organelles are uptaken through extra- and intra-cellular stress, starvation and infected pathogens, subsequently, autophagosomes are fused with lysosomes to break down the molecules. Salmonella enterica serovar Typhimurium (S. Typhimurium), intracellular bacteria, cause acute gastroenteritis and food poisoning. Given that autophagy induced by S. Typhimurium plays an important role in the cells to control the infection, we identify whether the induction of autophagy with rapamycin, chemical inducer of autophagy, before infection regulates S. Typhimurium infection. After treatment of rapamycin or 3-methyladenine (3-MA), autophagy inhibitor, RAW264.7 cells were infected with S. Typhimurium. Pretretment of rapamycin decreased the growth rate of S. Typhimurium in the cells; otherwise, pretreatment of 3-MA increased the growth rate of S. Typhimurium. The expression of autophagy-related genes was significantly increased in the S. Typhimurium-infected cells pretreated with rapamycin. To examine whether induced autophagy by rapamycin control the infection with increase the production of reactive oxygen species (ROS) and nitric oxide (NO), antibacterial radical substrates were measured in infected cells followed by the treatment with either rapamycin or 3-MA. NO production increased in RAW264.7 cells; otherwise, ROS production remained unchanged during the infection. These findings suggest that inducing autophagy with rapamycin reveals antimicrobial activity as producing NO against S. Typhimurium infection in mouse macrophages.

자가포식현상(autophagy)은 세포 내 또는 세포 외의 스트레스나 영양분의 고갈, 그리고 병원체 감염에 의해 유도되는 기전으로, 병원균, 손상된 단백질이나 세포 소기관을 autophagosome으로 격리하여 리소좀(lysosome)과 융합하여 분해시키는 기전이다. Salmonella enterica serovar Typhimurium (S. Typhimurium)은 세포 내로 감염되는 세균으로 급성 위장염과 식중독을 야기한다. S. Typhimurium 감염 시 세포 내에서 자가포식현상이 유도되며 이는 감염을 제어하는데 중요하다는 연구 논문들을 통해 본 연구에서는 자가포식현상 유도제인 rapamycin으로 자가포식현상을 유도했을 때, S. Typhimurium의 감염을 조절할 수 있는지 알아보고자 하였다. 자가포식현상 유도제인 rapamycin과 저해제인 3-methyladenine(3-MA)를 각각 처리한 후 쥐의 큰포식세포주인 RAW 264.7 세포에 S. Typhimurium을 감염시켰다. rapamycin을 전처리한 후 S. Typhimurium을 감염시켰을 때, 세포 내에서 S. Typhimurium의 성장률이 감소한 반면 3-MA의 전처리는 S. Typhimurium의 성장을 촉진시켰다. 또한, RAW 264.7 세포에 rapamycin을 처리 후 감염시켰을 때, 자가포식현상 관련 단백질의 발현이 유의하게 증가하였다. Rapamycin에 의하여 유도된 자가포식현상이 활성산소종(reactive oxygen species, ROS)과 활성 산화질소종(nitric oxide, NO)의 생성을 통해 감염을 제어하는지를 확인하기 위하여 이 두 물질을 측정하였다. 감염 전 rapamycin 처리 시 RAW 264.7 세포에서 NO의 생성은 증가하였으나 ROS의 생성에는 별다른 차이가 없었다. 이상의 결과는 쥐의 큰포식세포주에서 rapamycin처리로 유도된 자가포식현상은 NO 생성을 통해 항박테리아능을 나타낸다고 할 수 있다.

Keywords

References

  1. Ajene, A.N., Fischer Walker, C.L., and Black, R.E. 2013. Enteric pathogens and reactive arthritis: a systematic review of Campylobacter, Salmonella and Shigella-associated reactive arthritis. J. Health Popul. Nutr 31, 299-307.
  2. Bergmann, A. 2007. Autophagy and cell death: no longer at odds. Cell. 131, 1032-1034. https://doi.org/10.1016/j.cell.2007.11.027
  3. Bogdan, C., Rollinghoff, M., and Diefenbach, A. 2000. Reactive oxygen and reactive nitrogen intermediates in innate and specific immunity. Curr. Opin. Immunol. 12, 64-76. https://doi.org/10.1016/S0952-7915(99)00052-7
  4. Bosch, M., Poulter, N.S., Vatovec, S., and Franklin-Tong, V.E. 2008. Initiation of programmed cell death in self-incompatibility: role for cytoskeleton modifications and several caspase-like activities. Mol. Plant 1, 879-887. https://doi.org/10.1093/mp/ssn053
  5. Codogno, P. and Meijer, A.J. 2005. Autophagy and signaling: their role in cell survival and cell death. Cell. Death. Differ. 12 Suppl 2, 1509-1518. https://doi.org/10.1038/sj.cdd.4401751
  6. de Jong, H.K., Parry, C.M., van der Poll, T., and Wiersinga, W.J. 2012. Host-pathogen interaction in invasive Salmonellosis. PLoS. Pathog. 8, e1002933. https://doi.org/10.1371/journal.ppat.1002933
  7. Dorn, B.R., Dunn, W.A.Jr., and Progulske-Fox, A. 2002. Bacterial interactions with the autophagic pathway. Cell. Microbiol. 4, 1-10. https://doi.org/10.1046/j.1462-5822.2002.00164.x
  8. Garcia-del Portillo, F., Nunez-Hernandez, C., Eisman, B., and Ramos-Vivas, J. 2008. Growth control in the Salmonella-containing vacuole. Curr. Opin. Microbiol. 11, 46-52. https://doi.org/10.1016/j.mib.2008.01.001
  9. Levine, B. and Klionsky, D.J. 2004. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev. Cell. 6, 463-477. https://doi.org/10.1016/S1534-5807(04)00099-1
  10. Lindgren, S.W., Stojiljkovic, I., and Heffron, F. 1996. Macrophage killing is an essential virulence mechanism of Salmonella Typhimurium. Proc. Natl. Acad. Sci. USA 93, 4197-4201. https://doi.org/10.1073/pnas.93.9.4197
  11. Mizel, S.B., Honko, A.N., Moors, M.A., Smith, P.S., and West, A.P. 2003. Induction of macrophage nitric oxide production by Gram-negative flagellin involves signaling via heteromeric Toll-like receptor 5/Toll-like receptor 4 complexes. J. Immunol. 170, 6217-6223. https://doi.org/10.4049/jimmunol.170.12.6217
  12. Mizushima, N. 2007. Autophagy: process and function. Genes. Dev. 21, 2861-2873. https://doi.org/10.1101/gad.1599207
  13. Monastyrska, I. and Klionsky, D.J. 2006. Autophagy in organelle homeostasis: peroxisome turnover. Mol. Aspects Med. 27, 483-494. https://doi.org/10.1016/j.mam.2006.08.004
  14. Palladino, M.A., Johnson, T.A., Gupta, R., Chapman, J.L. and Ojha, P. 2007. Members of the Toll-like receptor family of innate immunity pattern-recognition receptors are abundant in the male rat reproductive tract. Biol. Reprod. 76, 958-964. https://doi.org/10.1095/biolreprod.106.059410
  15. Rabinowitz, J.D. and White, E. 2010. Autophagy and metabolism. Science 330, 1344-1348. https://doi.org/10.1126/science.1193497
  16. Ramos-Morales, F. 2012. Acidic pH: enemy or ally for enteric bacteria? Virulence 3, 103-106. https://doi.org/10.4161/viru.19382
  17. Rodriguez-Mallon, A., Cardenas, Y., Lugo, J.M., Oliva, A., Morales, A., and Estrada, M.P. 2009. Competitive RT-PCR strategy for quantitative evaluation of the expression of Tilapia (Oreochromis niloticus) growth hormone receptor type I. Biol. Proced. Online 11, 79-98. https://doi.org/10.1007/s12575-009-9002-3
  18. Rosenberger, C.M. and Finlay, B.B. 2002. Macrophages inhibit Salmonella Typhimurium replication through MEK/ERK kinase and phagocyte NADPH oxidase activities. J. Biol. Chem. 277, 18753-18762. https://doi.org/10.1074/jbc.M110649200
  19. Salcedo, S.P. and Holden, D.W. 2003. SseG, a virulence protein that targets Salmonella to the Golgi network. EMBO J. 22, 5003-5014. https://doi.org/10.1093/emboj/cdg517
  20. Smith, A.C., Cirulis, J.T., Casanova, J.E., Scidmore, M.A., and Brumell, J.H. 2005. Interaction of the Salmonella-containing vacuole with the endocytic recycling system. J. Biol. Chem. 280, 24634-24641. https://doi.org/10.1074/jbc.M500358200
  21. Trinchieri, G. and Sher, A. 2007. Cooperation of Toll-like receptor signals in innate immune defence. Nat. Rev. Immunol. 7, 179-190. https://doi.org/10.1038/nri2038
  22. Vazquez-Torres, A. and Fang, F.C. 2001. Oxygen-dependent anti-Salmonella activity of macrophages. Trends Microbiol. 9, 29-33. https://doi.org/10.1016/S0966-842X(00)01897-7
  23. Wenkoff, M.S. 1973. A review and case report. Salmonella Typhimurium septicemia in foals. Can. Vet. J. 14, 284-287.
  24. Wong, C.E., Sad, S., and Coombes, B.K. 2009. Salmonella enterica serovar Typhimurium exploits Toll-like receptor signaling during the host-pathogen interaction. Infect. Immun. 77, 4750-4760. https://doi.org/10.1128/IAI.00545-09
  25. Yang, Z. and Klionsky, D.J. 2009. An overview of the molecular mechanism of autophagy. Curr. Top. Microbiol. Immunol. 335, 1-32.
  26. Yang, Y.P., Liang, Z.Q., Gu, Z.L., and Qin, Z.H. 2005. Molecular mechanism and regulation of autophagy. Acta. Pharmacol. Sin. 26, 1421-1434. https://doi.org/10.1111/j.1745-7254.2005.00235.x