DOI QR코드

DOI QR Code

Characteristics of Biosurfactant Producing Pseudomonas sp. HN37

생물계면활성제 생성 세균 Pseudomonas sp. HN37의 특성

  • Jung, Da Hee (Department of Biological Science and Biotechnology, Hannam University) ;
  • Chang, Dong Ho (Department of Biological Science and Biotechnology, Hannam University) ;
  • Kim, Yeong Eun (Department of Biological Science and Biotechnology, Hannam University) ;
  • Jeong, Mi Rang (Department of Biological Science and Biotechnology, Hannam University) ;
  • Hahn, Kyu Woong (Department of Biological Science and Biotechnology, Hannam University) ;
  • Kim, Hyong Bai (Department of Biotechnology and Bioinformatics, Korea University) ;
  • Park, Kyeong Ryang (Department of Biological Science and Biotechnology, Hannam University)
  • 정다희 (한남대학교 생명시스템과학과) ;
  • 장동호 (한남대학교 생명시스템과학과) ;
  • 김영은 (한남대학교 생명시스템과학과) ;
  • 정미랑 (한남대학교 생명시스템과학과) ;
  • 한규웅 (한남대학교 생명시스템과학과) ;
  • 김형배 (고려대학교 생명정보공학과) ;
  • 박경량 (한남대학교 생명시스템과학과)
  • Received : 2012.11.19
  • Accepted : 2014.03.20
  • Published : 2014.03.31

Abstract

One hundred forty four bacterial colonies which were able to degrade crude oil were isolated from soil samples that were contaminated with oil in Daejeon area. Among them, one bacterial strain was selected for this study based on its emulsification activity, growth rate and surface tension activity, and this selected bacterial strain was identified as Pseudomonas sp. HN37 through physiological- biochemical tests and analysis of its 16S rRNA sequence. Pseudomonas sp. HN37 utilize the several aliphatic hydrocarbons, 3,5-dinitrosalicylic acid and 2,4-dichlorophooxyacetic acid as a sole carbon source. And this bacterial strain showed a high resistance to antibiotics such as ampicillin and chloramphenicol, as well as heavy metals such as Ba, Cr, Li and Mn. Also, it was found that the optimal pH and temperature for the cell growth, surface tension, and emulsification activity of Pseudomonas sp. HN37 were pH 6.0-9.0 and $30^{\circ}C$, respectively. The emulsification and surface tension activity was reached the maximum to 1% (V/V) crude oil and 1% (W/V) NaCl concentration. The surface tension of the culture broth was decreased from 62 to 27 dyne/cm after fifteen hours of inoculation in LB media.

대전일원의 유류오염 지역의 토양으로부터 원유를 단일 탄소원으로 이용하는 총 144균주를 순수분리 하였고, 이중 유화능과 성장률 그리고 표면장력활성이 가장 우수한 한 균주를 최종 선별하여 형태 및 생리 생화학적 특성을 조사하고 16S rRNA 염기서열을 분석을 통해 Pseudomonas sp. HN37이라 명명하였다. 최종 선별된 Pseudomonas sp. HN37는 여러 종류의 지방족 탄화수소와 3,5-dinitrosalicylic acid와 2,4-dichlorophooxyacetic acid를 단일 탄소원으로 이용하여 성장하였다. 그리고 이 균주는 암피실린과 클로람페니콜 항생제와 Ba, Cr, Li, Mn 중금속에 대해 강한 내성을 갖고 있었고, pH 6.0-9.0과 $30^{\circ}C$에서 성장능과 표면장력활성, 그리고 유화능이 가장 우수한 것으로 확인되었다. 또 Pseudomonas sp. HN37는 1% (v/v) 원유 농도와 1%(w/v) NaCl에서 최대 유화능과 표면장력활성을 나타내었고, LB배지에서 배양 15시간 후에 표면장력활성이 62 dyne/cm에서 27 dyne/cm까지 감소하였다.

Keywords

References

  1. Al-Wahaibi, Y., Joshi, S., Al-Bahry, S., Elshafie, A., Al-Bemani, A., and Shibulal, B. 2014. Biosurfactant production by Bacillus subtilis B30 and its application in enhancing oil recovery. Colloids Surf. B. 114, 324-333. https://doi.org/10.1016/j.colsurfb.2013.09.022
  2. Appanna, V.D., Finn, H., and Pierre, M.S. 1995. Exocellular phosphatidylethanolamine production and multiple-metal tolerance in Pseudomonas fluorescens. FEMS Microbiol. Lett. 131, 53-56. https://doi.org/10.1111/j.1574-6968.1995.tb07753.x
  3. Atlas, R.M. and Bartha, R. 1972. Biodegradation of petroleum in seawater at low temperature. Can. J. Microbiol. 18, 1851-1855. https://doi.org/10.1139/m72-289
  4. Awashti, N., Kumar, A., Makkar, R., and Cameotra, S. 1999. Enhanced biodegradation of endosulfan, a chlorinated pesticide in presence of a biosurfactant. J. Environ. Sci. Heal. B. 34, 793-803. https://doi.org/10.1080/03601239909373226
  5. Banat, I.M., Franzetti, A., Gandolfi, I., Bestetti, G., Martinotti, M.G., Fracchia, L., Smyth, T.J., and Marchant, R. 2010. Microbial biosurfactants production, applications and future potential. Appl. Microbiol. Biotechnol. 87, 427-444. https://doi.org/10.1007/s00253-010-2589-0
  6. Barathi, S. and Vasudevan, N. 2001. Utilization of petroleum hydrocarbons by Pseudomonas fluorescens isolated from a contaminated soil. Environ. Int. 26, 413-416. https://doi.org/10.1016/S0160-4120(01)00021-6
  7. Cameron, D.R., Cooper, D.G., and Neufeld, R.J. 1988. The mannoprotein of Saccharomyces cerevisiae is an effective bioemulsifier. Appl. Environ. Microbiol. 54, 1420-1425.
  8. Cappello, S., Santisi, S., Calogero, R., Hassanshahian, M., and Yakimov, M.M. 2012. Characterisation of oil-degrading bacteria isolated from Bilge Water. Water Air Soil Pollut. 223, 3219-3226. https://doi.org/10.1007/s11270-012-1103-y
  9. Chang, D.H., Ko, E.J., and Park, K.R. 2011. Charcateristics of biosurfactant producing Pseudomonas sp. Z1. J. Life Science 21, 134-140. https://doi.org/10.5352/JLS.2011.21.1.134
  10. Cirigliano, M.C. and Carman, G.M. 1984. Purification and characterization of liposan, a bioemulsifier from Candida lipolytica. Appl. Environ. Microbiol. 50, 846-850.
  11. Dibble, J.T. and Bartha, R. 1979. Effects of environmental parameters on the biodegradation of oil sludge. Appl. Environ. Microbiol. 37, 729-739.
  12. Donio, M.B.S., Ronica, F.A., Viji, V.T., Velmurugan, S., Jenifer, J.S.C.A., Michaelbabu, M., and Citarasu, T. 2013. Halomonas sp. BS4, A biosurfactant producing halophilic bacterium isolated from solar salt works in India and their biomedical importance. SpringerPlus 2, 149. https://doi.org/10.1186/2193-1801-2-149
  13. Hong, J.J., Yang, S.M., Lee, C.H., Choi, Y.K., and Kajiuchi, T. 1998 Ultrafiltration of divalent metal cations from aqueous solution using polycarboxylic acid type biosurfactants. J. Colloid Interf. Sci. 202, 63-73. https://doi.org/10.1006/jcis.1998.5446
  14. Ishigami, Y., Zhang, Y., and Ji, F. 2000. Spiculisporic acid. Functional development of biosurfactants. Chim. Oggi. 18, 32-34.
  15. Jennema, G.E., McInerney, M.J., Knapp, R.M., Clark, J.B., Feero, J.M., Revus, D.E., and Menzie, D.E. 1983. A halotolerant, biosurfactantsproducing Bacillus species potentially useful for enhanced oil recovery. Dev. Ind. Microbiol. 24, 485-492.
  16. Kim, G.J., Lee, I.S., and Park, K.R. 1999. Characteristics of waste lubricant degradation by Acinetobacter lwoffii I6C-1. J. Life Science 9, 76-81.
  17. Krieg, N.R. and Holt, J.G. 1984. Bergey's Manual of Systematic Bacteriology. Williams, Wikins and Baltimore.
  18. Lang, S. 2002. Biological amphiphiles (microbial biosurfactants). Curr. Opin. Colloid Inter. Sci. 7, 12-20. https://doi.org/10.1016/S1359-0294(02)00007-9
  19. MacFaddin, J.F. 1984. Biochemical tests for identification for medical bacteria. 2nd ed., Williams and Wilkins Co., Baltimore, USA.
  20. Mulkins-philips, G.J. and Stewart, T.E. 1974. Effect of environmental parameters on bacterial degradation of bunker C oil, crude oil, and hydrocarbons. Appl. Microbiol. 28, 915-922.
  21. Mulligan, C.N., Gibbs, B.F., and Kosaric, N. 1993. Biosurfactantsproduction, properties, application, pp. 329-372. In Dekker, M. (ed.), New York, USA.
  22. Muthusamy, K., Gopalakrishnan, S., Ravi, T.K., and Sivachidambaram, P. 2008. Biosurfactants: properties, commercial production and application. Curr. Sci. 94, 736-747.
  23. Noparat, P., Maneerat, S., and Saimmai, A. 2013. Utilization of palm oil decanter cake as a novel substrate for biosurfactant production from a new and promising strain of Ochrobactrum anthropi. World J. Microbiol. Biotechnol. 30, 865-877.
  24. Pacwa-Plociniczak, M., Plaza, G.A., Piotrowska-Seget, Z., and Cameotra, S.S. 2011. Environmental applications of biosurfactants: recent advances. Int. J. Mol. Sci. 12, 633-654 https://doi.org/10.3390/ijms12010633
  25. Pradhan, A.K., Pradhan, N., Sukla, L.B., Panda, P.K., and Mishra, B.K. 2014. Inhibition of pathogenic bacterial biofilm by biosurfactant produced by Lysinibacillus fusiformis S9. Bioprocess Biosyst. Eng. 37, 139-149. https://doi.org/10.1007/s00449-013-0976-5
  26. Rahman, P.K. and Gakpe, E. 2008. Production, characterisation and applications of biosurfactants-review. Biotechnology 7, 360-370. https://doi.org/10.3923/biotech.2008.360.370
  27. Rosenberg, E. 1993. Exploiting microbial growth on hydrocarbons - New markets. Trends Biotechnol. 11, 419-424. https://doi.org/10.1016/0167-7799(93)90005-T
  28. Rosenberg, E., Rubinovitz, C., Legmann, R., and Ron, E.Z. 1988. Purification and chemical properties of Acinetobacter calcoaceticus A2 biodispersan. Appl. Environ. Microbiol. 54, 323-326.
  29. Singh, A.K. and Cameotra, S.S. 2013. Rhamnolipids production by multi-metal-resistant and plant-growth-promoting Rhizobacteria. Appl. Biochem. Biotechnol. 170, 1038-1056. https://doi.org/10.1007/s12010-013-0244-9
  30. Soberon-Chavez, G. and Maier, R.M. 2011 Biosurfactants: A general overview. Biosurfactants, pp. 1-11. In Soberon-Chavez, G. (ed.), Springer-Verlag, Berlin, Germany.
  31. Tavares, L.F., Silva, P.M., Junqueira, M., Mariano, D.C., Nogueira, F.C., Domont, G.B., Freire, M.G., and Neves, B.C. 2013. Characterization of rhamnolipids produced by wild-type and engineered Burkholderia kururiensis. Appl. Microbiol. Biotechnol. 97, 1909-1921. https://doi.org/10.1007/s00253-012-4454-9
  32. Toren, A., Navon-Venezia, S., Ron, E.Z., and Rosenberg, E. 2001. Emulsifying activity of purified alasan proteins from Acinetobacter radioresistens. Appl. Environ. Microbiol. 67, 1102-1106. https://doi.org/10.1128/AEM.67.3.1102-1106.2001
  33. Van Bogaert, I.N., Holvoet, K., Roelants, S.L., Li, B., Lin, Y.C., Van de Peer, Y., and Soetaert, W. 2013. The biosynthetic gene cluster for sophorolipids: a biotechnological interesting biosurfactant produced by Starmerella bombicola. Mol. Microbiol. 88, 501-509. https://doi.org/10.1111/mmi.12200
  34. Wagner, D.B., Furnier, G.R., Saghai-Maroof, M.A., Williams, S.M., Dancik, B.P., and Allard, R.W. 1987. Chloroplast DNA polymorphisms in lodgepole and jack pines and their hybrids. Proc. Natl. Acad Sci. USA 84, 2097-2100. https://doi.org/10.1073/pnas.84.7.2097
  35. Walker, J.D. and Cowell, R.R. 1975. Some effects of petroleum on estuarine and marine microorganisms. Can. J. Microbiol. 21, 305-313. https://doi.org/10.1139/m75-044
  36. Yakimov, M.M., Timmis, K.N., Wray, V., and Fredrickson, H.L. 1995. Characterization of a new lipopeptide surfactant produced by thermotolerant and halotolerant subsurface Bacillus licheniformis BAS50. Appl. Environ. Microbiol. 61, 1706-1713.
  37. Zhang, X., Xu, D., Zhu, C., Lundaa, T., and Scherr, K.E. 2012. Isolation and identification of biosurfactant producing and crude oil degrading Pseudomonas aeruginosa strains. Chem. Engineering J. 209, 138-146. https://doi.org/10.1016/j.cej.2012.07.110