Browse > Article
http://dx.doi.org/10.7845/kjm.2014.4008

Induced Autophagy Regulates Salmonella enterica serovar Typhimurium Infection in Murine Macrophage  

Lee, Sunhye (Medical and Bio-Materials Research Consortium, Kangwon National University)
Kim, Ju-Young (Department of Biological Sciences, Kangwon National University)
Lee, Hyo-Ji (Department of Biological Sciences, Kangwon National University)
Jung, Yu-Jin (Medical and Bio-Materials Research Consortium, Kangwon National University)
Publication Information
Korean Journal of Microbiology / v.50, no.1, 2014 , pp. 27-32 More about this Journal
Abstract
Autophagy is one of the lysosomal degradation pathways to maintain cellular homeostasis. The damaged proteins or organelles are uptaken through extra- and intra-cellular stress, starvation and infected pathogens, subsequently, autophagosomes are fused with lysosomes to break down the molecules. Salmonella enterica serovar Typhimurium (S. Typhimurium), intracellular bacteria, cause acute gastroenteritis and food poisoning. Given that autophagy induced by S. Typhimurium plays an important role in the cells to control the infection, we identify whether the induction of autophagy with rapamycin, chemical inducer of autophagy, before infection regulates S. Typhimurium infection. After treatment of rapamycin or 3-methyladenine (3-MA), autophagy inhibitor, RAW264.7 cells were infected with S. Typhimurium. Pretretment of rapamycin decreased the growth rate of S. Typhimurium in the cells; otherwise, pretreatment of 3-MA increased the growth rate of S. Typhimurium. The expression of autophagy-related genes was significantly increased in the S. Typhimurium-infected cells pretreated with rapamycin. To examine whether induced autophagy by rapamycin control the infection with increase the production of reactive oxygen species (ROS) and nitric oxide (NO), antibacterial radical substrates were measured in infected cells followed by the treatment with either rapamycin or 3-MA. NO production increased in RAW264.7 cells; otherwise, ROS production remained unchanged during the infection. These findings suggest that inducing autophagy with rapamycin reveals antimicrobial activity as producing NO against S. Typhimurium infection in mouse macrophages.
Keywords
Salmonella Typhimurium; autophagy; macrophage; rapamycin;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Yang, Z. and Klionsky, D.J. 2009. An overview of the molecular mechanism of autophagy. Curr. Top. Microbiol. Immunol. 335, 1-32.
2 Yang, Y.P., Liang, Z.Q., Gu, Z.L., and Qin, Z.H. 2005. Molecular mechanism and regulation of autophagy. Acta. Pharmacol. Sin. 26, 1421-1434.   DOI   ScienceOn
3 Rodriguez-Mallon, A., Cardenas, Y., Lugo, J.M., Oliva, A., Morales, A., and Estrada, M.P. 2009. Competitive RT-PCR strategy for quantitative evaluation of the expression of Tilapia (Oreochromis niloticus) growth hormone receptor type I. Biol. Proced. Online 11, 79-98.   DOI   ScienceOn
4 Palladino, M.A., Johnson, T.A., Gupta, R., Chapman, J.L. and Ojha, P. 2007. Members of the Toll-like receptor family of innate immunity pattern-recognition receptors are abundant in the male rat reproductive tract. Biol. Reprod. 76, 958-964.   DOI   ScienceOn
5 Ramos-Morales, F. 2012. Acidic pH: enemy or ally for enteric bacteria? Virulence 3, 103-106.   DOI
6 Rosenberger, C.M. and Finlay, B.B. 2002. Macrophages inhibit Salmonella Typhimurium replication through MEK/ERK kinase and phagocyte NADPH oxidase activities. J. Biol. Chem. 277, 18753-18762.   DOI   ScienceOn
7 Salcedo, S.P. and Holden, D.W. 2003. SseG, a virulence protein that targets Salmonella to the Golgi network. EMBO J. 22, 5003-5014.   DOI   ScienceOn
8 Smith, A.C., Cirulis, J.T., Casanova, J.E., Scidmore, M.A., and Brumell, J.H. 2005. Interaction of the Salmonella-containing vacuole with the endocytic recycling system. J. Biol. Chem. 280, 24634-24641.   DOI   ScienceOn
9 Trinchieri, G. and Sher, A. 2007. Cooperation of Toll-like receptor signals in innate immune defence. Nat. Rev. Immunol. 7, 179-190.   DOI   ScienceOn
10 Vazquez-Torres, A. and Fang, F.C. 2001. Oxygen-dependent anti-Salmonella activity of macrophages. Trends Microbiol. 9, 29-33.   DOI   ScienceOn
11 Wenkoff, M.S. 1973. A review and case report. Salmonella Typhimurium septicemia in foals. Can. Vet. J. 14, 284-287.
12 Garcia-del Portillo, F., Nunez-Hernandez, C., Eisman, B., and Ramos-Vivas, J. 2008. Growth control in the Salmonella-containing vacuole. Curr. Opin. Microbiol. 11, 46-52.   DOI   ScienceOn
13 Codogno, P. and Meijer, A.J. 2005. Autophagy and signaling: their role in cell survival and cell death. Cell. Death. Differ. 12 Suppl 2, 1509-1518.   DOI   ScienceOn
14 de Jong, H.K., Parry, C.M., van der Poll, T., and Wiersinga, W.J. 2012. Host-pathogen interaction in invasive Salmonellosis. PLoS. Pathog. 8, e1002933.   DOI
15 Mizel, S.B., Honko, A.N., Moors, M.A., Smith, P.S., and West, A.P. 2003. Induction of macrophage nitric oxide production by Gram-negative flagellin involves signaling via heteromeric Toll-like receptor 5/Toll-like receptor 4 complexes. J. Immunol. 170, 6217-6223.   DOI
16 Dorn, B.R., Dunn, W.A.Jr., and Progulske-Fox, A. 2002. Bacterial interactions with the autophagic pathway. Cell. Microbiol. 4, 1-10.   DOI   ScienceOn
17 Levine, B. and Klionsky, D.J. 2004. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev. Cell. 6, 463-477.   DOI   ScienceOn
18 Lindgren, S.W., Stojiljkovic, I., and Heffron, F. 1996. Macrophage killing is an essential virulence mechanism of Salmonella Typhimurium. Proc. Natl. Acad. Sci. USA 93, 4197-4201.   DOI   ScienceOn
19 Mizushima, N. 2007. Autophagy: process and function. Genes. Dev. 21, 2861-2873.   DOI   ScienceOn
20 Monastyrska, I. and Klionsky, D.J. 2006. Autophagy in organelle homeostasis: peroxisome turnover. Mol. Aspects Med. 27, 483-494.   DOI   ScienceOn
21 Bogdan, C., Rollinghoff, M., and Diefenbach, A. 2000. Reactive oxygen and reactive nitrogen intermediates in innate and specific immunity. Curr. Opin. Immunol. 12, 64-76.   DOI   ScienceOn
22 Ajene, A.N., Fischer Walker, C.L., and Black, R.E. 2013. Enteric pathogens and reactive arthritis: a systematic review of Campylobacter, Salmonella and Shigella-associated reactive arthritis. J. Health Popul. Nutr 31, 299-307.
23 Bergmann, A. 2007. Autophagy and cell death: no longer at odds. Cell. 131, 1032-1034.   DOI   ScienceOn
24 Bosch, M., Poulter, N.S., Vatovec, S., and Franklin-Tong, V.E. 2008. Initiation of programmed cell death in self-incompatibility: role for cytoskeleton modifications and several caspase-like activities. Mol. Plant 1, 879-887.   DOI
25 Rabinowitz, J.D. and White, E. 2010. Autophagy and metabolism. Science 330, 1344-1348.   DOI   ScienceOn
26 Wong, C.E., Sad, S., and Coombes, B.K. 2009. Salmonella enterica serovar Typhimurium exploits Toll-like receptor signaling during the host-pathogen interaction. Infect. Immun. 77, 4750-4760.   DOI   ScienceOn