DOI QR코드

DOI QR Code

이단유로 축전식 탈염공정의 하수고도처리 적용가능성 평가

Feasibility Study on Double Path Capacitive Deionization Process for Advanced Wastewater Treatment

  • 투고 : 2014.02.13
  • 심사 : 2014.04.16
  • 발행 : 2014.04.30

초록

본 연구는 물 재이용을 위한 하수고도처리공정으로서 이단유로 축전식 탈염공정의 적용 가능성을 평가하였다. 일반적으로 축전식 탈염장치는 전극이 병렬식으로 단순 적층되어 있는 반면에 이단유로 축전식 탈염장치는 분리판에 의해 모듈이 2개의 단으로 구분되어 1단과 2단이 수리학적 직렬연결이 되도록 고안되었다. 동일한 유입조건에서 전산유체역학 분석결과 이단유로 모듈이 단일유로 모듈에 비해 스페이서에서 보다 균등하고 빠른 유속분포를 보였고, 사영역도 상대적으로 작게 나타났다. 하지만 입구와 출구 간 압력강하는 단일유로 모듈이 0.4 bar인 반면 이단유로 모듈은 0.7 bar로 높게 나타났다. NaCl용액을 원수로 사용한 단위셀 테스트 결과, 단일유로와 이단유로의 최대 탈염효율은 유입유량 10 mL/min/cell pair에서 각각 88%, 91%이었다. 유량증가에 따른 단위셀 압력강하의 증가는 이단유로가 단일유로보다 높게 나타났으며, 유입유량 70 mL/min/cell pair에서 이단유로의 압력강하는 1.67 bar로 단일유로의 압력강하보다 2배 높게 나타났다. 이단유로의 압력강하를 완화시키기 위하여 전극 간 간격을 100에서 $200{\mu}m$으로 늘린 결과, 탈염효율은 유사하게 유지하면서 압력강하는 최대 0.87 bar로 낮게 유지할 수 있었다. Proto-type 축전식 탈염장치에 하수처리수를 주입하여 연속 운전한 결과, TDS 제거효율은 평균 78%로 나타났으며, 특정이온의 경우, $NH_4{^+}$-N, $NO_3{^-}$-N 및 $PO_4{^{3-}}$-P 제거효율이 각각 50%, 93% 및 50%로 나타나 질소제거 관점에서 CDI기술의 하수고도처리공정 활용가능성이 높을 것으로 판단된다.

This study demonstrates a double-path CDI as an alternative of advanced wastewater treatment process. While the CDI typically consists of many pairs of electrodes connected in parallel, the new double-path CDI is designed to have series flow path by dividing the module into two stages. The CFD model showed that the double-path had uniform flow distribution with higher velocity and less dead zone compared with the single-path. However, the double-path was predicted to have higher pressure drop(0.7 bar) compared the single-path (0.4 bar). From the unit cell test, the highest TDS removal efficiencies of single- and double-path were up to 88% and 91%, respectively. The rate of increase in pressure drop with an increase of flow rate was higher in double-path than single-path. At 70 mL/min of flow rate, the pressure drop of double-path was 1.67 bar, which was two times higher than single-path. When the electrode spacing was increased from 100 to $200{\mu}m$, the pressure drop of double-path decreased from 1.67 to 0.87 bar, while there was little difference in TDS removal. When proto type double-path CDI was operated using sewage water, TDS, $NH_4{^+}$-N, $NO_3{^-}$-N and $PO_4{^{3-}}$-P removal efficiencies were up to 78%, 50%, 93% and 50%, respectively.

키워드

참고문헌

  1. Kim, I. S. and Oh, B. S., "Technologies of sweater desalination and wastewater reuse for solving water shortage," J. Kor. Soc. Environ. Eng., 30(12), 1197-1202(2008).
  2. Welgemoed, T. J. and Schutte, C. F., "Capacitive deionization $technology^{TM}$: an alternative desalination solution," Desalination, 183, 327-340(2005). https://doi.org/10.1016/j.desal.2005.02.054
  3. Oren, Y., "Capacitive deionization (CDI) for desalination and water treatment - past, present and future (a review)," Desalination, 228, 10-29(2008). https://doi.org/10.1016/j.desal.2007.08.005
  4. Li. H., Pan L, Lu T., Zhan Y., Nie C. and Sun Z., "A comparative study on electrosorptive behavior of carbon nanotubes and graphene for capacitive deionization, J. Electroanal. Chem., 653, 40-44(2011). https://doi.org/10.1016/j.jelechem.2011.01.012
  5. Wang, Z., Dou, B., Zheng, L., Zhang, G., Liu, Z. and Hao, Z., "Effective desalination by capacitive deionization with functional graphene nanocomposite as novel electrode material," Desalination, 299, 96-102(2012). https://doi.org/10.1016/j.desal.2012.05.028
  6. Li, H. and Zou, L., "Ion-exchange membrane capacitive deionization: A new strategy for brackish water desalination," Desalination, 275, 62-66(2011). https://doi.org/10.1016/j.desal.2011.02.027
  7. Kim, Y.-J., Kim, J.-H. and Choi, J. H., "Selective removal of nitrate ions by controlling the applied current in membrane capacitive deionization (MCDI)," J. Membr. Sci., 429, 52-57 (2013). https://doi.org/10.1016/j.memsci.2012.11.064
  8. Kim. Y. J. and Choi, J. H., "Improvement of desalination efficiency in capacitive deionization using a carbon electrode coated with an ion exchange polymer," Water Res., 44(3), 990-996(2010). https://doi.org/10.1016/j.watres.2009.10.017
  9. Mossad, M. and Zou, L., "A study of the capacitive deionisation performance under various operational conditions," J. Hazard. Mater., 213-214, 491-497(2012). https://doi.org/10.1016/j.jhazmat.2012.02.036
  10. Comerton, A. M. Andrews, R. C. and Bagley, D. M., "Evaluation of an MBR-RO system to produce high quality reuse water: Microbial control, DBP formation and nitrate," Water Res., 39(16), 3982-3990(2005). https://doi.org/10.1016/j.watres.2005.07.014
  11. Sohn, D. Y., Choi, Y. H., Park, D. W. and Jung, C. H., "Computational study for performance evaluation of flow channels inside CDI unit cell," J. Comput. Fluids Eng., 15 (1), 31-36(2010).
  12. Porada, S., Bryjak, M., van der Wal, A. and Biesheuvel, P. M., "Effect of electrode thickness variation on operation of capacitive deionization," Electrochimica Acta, 75, 148-156 (2012). https://doi.org/10.1016/j.electacta.2012.04.083