DOI QR코드

DOI QR Code

엽록체 matK 와 핵 ITS 염기서열을 이용한 나도풍란속 및 풍란속의 계통과 종동정

Phylogenetic position of Neofinetia and Sedirea (Orchidaceae) and their species identification using the chloroplast matK and the nuclear ITS sequences

  • 김영기 (고려대학교 생명과학대학 생명과학부) ;
  • 조상진 (고려대학교 생명과학대학 생명과학부) ;
  • 김기중 (고려대학교 생명과학대학 생명과학부)
  • Kim, Young-Kee (Division of Life Sciences, School of Life Sciences, Korea University) ;
  • Jo, Sang Jin (Division of Life Sciences, School of Life Sciences, Korea University) ;
  • Kim, Ki-Joong (Division of Life Sciences, School of Life Sciences, Korea University)
  • 투고 : 2014.01.27
  • 심사 : 2014.03.03
  • 발행 : 2014.03.31

초록

엽록체 matK 유전자와 핵 ITS 염기서열을 이용하여 나도풍란속 및 풍란속의 계통학적 위치를 정립하였다. 또한, 이들 마커를 이용하여 종 및 원산지 추적에 활용가능성을 평가하였다. 풍란속과 나도풍란속은 두 마커 모두에서 뚜렷한 단계통군을 형성하였다. 풍란속의 자매군은 Vanda임이 두 마커 모두에서 입증되었으나,본 연구 결과는 풍란속을 Vanda에 포함시키는 처리에는 동의하지 않았다. 나도풍란속은 (Dimorphorchis (Pteroceras (Saccolabiun+Phalaeonopsis))) 계통군과 자매군을 형성하였고, 이중 Dimorphorchis와 자매속일 가능성이 가장 높았다. 형태적 유사성으로 나도풍란속이 Aerides와 자매속이라는 주장의 가능성은 희박하였다. 두 마커를 분석한 결과 풍란속의 경우 종 및 종 내의 산지별 구별이 가능한 것으로 평가되었다. 따라서 풍란의 재배 개체들의 기원을 규명하는데도 유용한 것으로 평가되었다. 그러나, 공공 염기서열 DB에 있는 서열들은 의유전자로 추정되는 서열들을 다수 포함하고 있었다. 또한, 재배 난과식물에는 속간 및 종간 잡종이 많으며 잡종에 의한 수평적 유전자 이동문제 등이 결부되어 있으므로, 계통학적으로 염기서열 자료를 이용하는데 주의하여야 한다. 계통분석을 위하여는 한 종 내의 여러 개체로부터 염기서열을 확보하는 것이 이러한 위험성을 줄이는 방법 중에 하나이다.

Phylogenetic positions of Sedirea and Neofinetia were addressed using the chloroplast matK and the nuclear ITS sequences. We also evaluate the usefulness of the makers for the identification of species and localities. Sedirea and Neofinetia form an independent monophyletic genus, respectively, in both matK and nuclear ITS trees. The sister genus of the Neofinetia was Vanda in both trees. In addition, our trees support the separate recognition of the Neofinetia from Vanda rather than the inclusion of Neofinetia into Vanda. The sister group of the Sedirea was (Dimorphorchis(Pteroceras(Saccolabiun+Phalaeonopsis))) clade. The Dimorphorchis was one of the most probable sister genus to the Sedirea. The sister group relationship between Sedirea and Aerides was suggested by their similar morphology, but not supported in molecular trees. The identification of species and localities of Neofinetia was possible using our two molecular markers. However, several pseudo-gene sequences are discovered from the public data base. In addition, the horizontal gene transfer of chloroplast genomes is frequent events in orchid hybrids. Therefore, we need a careful evaluation for the data prior to systematic use. Generation of sequence data from multiple accessions of a species may helpful to reduce these types of error.

키워드

참고문헌

  1. Bergsten, J. 2005. A review of long-branch attraction. Cladistics 21: 163-193. https://doi.org/10.1111/j.1096-0031.2005.00059.x
  2. Carlsward, B. S., W. M. Whitten, N. H. Williams and B. Bytebier. 2006. Molecular phylogeny of Vandeae (Orchidaceae) and the evolution of leaessness. American Journal of Botany 93: 770- 786. https://doi.org/10.3732/ajb.93.5.770
  3. CBOL Plant Working Group. 2009. A DNA barcode for land plants. Proceedings of the National Academy of Sciences USA, 106: 12794-12797. Reaction conditions used in the CBOL Plant Working Group paper. https://doi.org/10.1073/pnas.0905845106
  4. Chase, M. W., K. M. Cameron, R. L. Barrett and J. V. Freudenstein. 2003. DNA data and Orchidaceae systematics: a new phylogenetic classification. In Orchid conservation. Dixon K. W., S. P. Kell, R. L. Barrett and J. P. Cribb (eds.), Kota Kinabalu Natural History Publications (Borneo). Pp. 69-89.
  5. Christenson, E. A. 1985. The generic reassignment of Hygrochilus subparishii Tsi (Orchidaceae: Sarcanthinae). Taxon 34: 516-518. https://doi.org/10.2307/1221229
  6. Christenson, E. A., 1996: A new species of Neofinetia from China and northern Korea, Orchidaceae: Aeridinae. Lindleyana 11: 220-221
  7. Dressler, R. L. 1993. Phylogeny and Classification of the Orchid Family. Cambridge University Press, Cambridge.
  8. Edgar, R.C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32: 1792-1797. https://doi.org/10.1093/nar/gkh340
  9. Doyle, J. J. and J. L. Doyle. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19: 11-15.
  10. Fazekas, A. J., M. L. Kuzmina, S. G. Newmaster and P. M. Hollingsworth. 2012. DNA barcoding methods for land plants. In DNA Barcodes: Methods and Protocols. Kress, W. J. and D. L. Erickson (eds.), Methods in Molecular Biology 858: 223-252. https://doi.org/10.1007/978-1-61779-591-6_11
  11. Garay, L. A. 1972. On the origin of the Orchidaceae, II. Journal of the Arnold Arboretum 53: 202-215.
  12. Garay, L. A. and H. R. Sweet. 1974. Orchids of the southern Ryukyu Islands, 180 pp. Cambridge, Massachusetts, USA. P. 149.
  13. Gardiner, L. M. 2012. New combinations in the genus Vanda (Orchidaceae). Phytotaxa 61: 47-54. https://doi.org/10.11646/phytotaxa.61.1.4
  14. Gardiner, L. M., A. Kocyan, M. Motes, D. L. Roberts and B. C. Emerson. 2013. Molecular phylogenetics of Vanda and related genera (Orchidaceae) Botanical Journal of the Linnean Society 173: 549-572. https://doi.org/10.1111/boj.12102
  15. Goldman, D. H., J. V. Freudenstein, P. J. Kores, M. Molvray, D. C. Jarrell, W. M. Whitten, K. M. Cameron, R. K. Jansen and M. W. Chase. 2001. Phylogenetics of Arethuseae (Orchidaceae) based on plastid matK and rbcL sequences. Systematic Botany 26: 670-695.
  16. Hollingsworth, P. M., S. W. Graham and D. P. Little. 2011. Choosing and using a plant DNA barcode. PLoS ONE 6: e19254. doi:10.1371/journal.pone.0019254.
  17. Hu, H. H. 1925. Nomenclatorial changes for some Chinese orchids. Rhodora 27: 105-107.
  18. Kocyan, A., E. F. de Vogel, E. Conti and B. Gravendeel. 2008. Molecular phylogeny of Aerides (Orchidaceae) based on one nuclear and two plastid markers: A step forward in understanding the evolution of the Aeridinae. Molecular Phylogenetics and Evolution 48: 422-443. https://doi.org/10.1016/j.ympev.2008.02.017
  19. Liu, Z. J. and Chen, S. C. 2004 Neofinetia xichangensis, a new species of Orchidaceae from Sichuan. Acta Botanica. Yunnanica 26: 299-300.
  20. Murray, J. A. 1784. Caroli a Linne Equitis Systema Vegetabilium. Editio Decima Quarta. Gottingen. (Systema Vegetabilium ed. 14): 811. (Available from http://www.biodiversitylibrary.org/item/10309)
  21. Palmer, J. D. 1986. Isolation and structural analysis of chloroplast DNA. In Methods in Enzymology, Vol 118. Weissbach A, and H. Weissbach (eds.), New York, Academic Press. Pp 167-186.
  22. Posada D. and K. A. Crandall. 1998. MODELTEST: testing the model of DNA substitution. Bioinformatics 14: 817-818. https://doi.org/10.1093/bioinformatics/14.9.817
  23. Reichenbach, H. G. 1863. Renu Orchideen, Aerides iaponicum Lind. Rechb. fil. Hamburger Garten-und Blumenzeitung 19: 210-211. (Available from http://books.google.co.kr/books?vid=HARVARD:32044103109138)
  24. Rieseberg, L. H. and D. E. Soltis. 1991. Phylogenetic consequences of cytoplasmic gene flow in plants. Evolutionary Trends in Plants 5: 65-84.
  25. Rousseau-Gueutin, M., M. A. Ayliffe and J. N. Timmis. 2012. Plastid DNA in the nucleus: new genes for old. Plant Signaling and Behavior 7: 269-72. https://doi.org/10.4161/psb.18762
  26. Topik, H., T. Yukawa and M. Ito. 2005. Molecular phylogenetics of subtribe Aeridinae (Orchidaceae): insights from plastid matK and nuclear ribosomal ITS sequences. Journal of Plant Research 118: 271-284. https://doi.org/10.1007/s10265-005-0217-3
  27. Sheppard, A. E. and N. J. Timmis. 2009. Instability of plastid DNA in the nuclear genome. PLoS Genettics 5(1): e1000323.doi:10.1371/journal.pgen. 1000323.
  28. Siddall, M. E. and M. F. Whiting. 1999. Long-branch abstractions. Cladistics 15: 9-24. https://doi.org/10.1111/j.1096-0031.1999.tb00391.x
  29. Smith, R. L. and K. J. Sytsma. 1990. Evolution of Populus nigra (sect. Aigeiros): Introgressive hybridization and the chloroplast contribution of Populus alba (sect. Populus). American Journal of Botany 77: 1176-1187. https://doi.org/10.2307/2444628
  30. Stegemann, S., M. Keuthe, S. Greiner and R. Bock. 2012. Horizontal transfer of chloroplast genomes between plant species. Proceedings of the National Academy of Sciences USA 14; 109: 2434-2438.
  31. Sun, Y., D. Z. Skinner, G. H. Liang and S. H. Hulbert. 1994. Phylogenetic analysis of Sorghum and related taxa using internal transcribed spacers of nuclear ribosomal DNA. Theoretical and Applied Genetics 89: 26-32.
  32. Swofford, D. L. 2002. PAUP: Phylogenetic analysis using parsimony and other methods (ver. 4.0). Sinauer Associates, Sunderland, MA.
  33. White, T. J., T. Bruns, S. Lee and J. W. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications. Innis, M. A., D. H. Gelfand, J. J. Sninsky and T. J. White. (eds.). Academic Press, Inc., New York. Pp. 315-322.
  34. Zhang, G.-Q., K.-W. Liu, L.-J. Chen, X.-J. Xiao, J.-W. Zhai, L.-Q. Li, J. Cai1, Y.-Y. Hsiao, W.-H. Rao, J. Huang, X.-Y. Ma, S.-W. Chung, L.-Q. Huang, W.-C. Tsai and Z.-J. Liu. 2013. A new molecular phylogeny and a new genus, Pendulorchis, of the Aerides-Vanda alliance (Orchidaceae: Epidendroideae). PLoS ONE 8(4): e60097. doi:10.1371/journal.pone.0060097.

피인용 문헌

  1. Natural hybridization of Iris species in Mt. Palgong-san, Korea vol.45, pp.3, 2015, https://doi.org/10.11110/kjpt.2015.45.3.243
  2. Genetic diversity and population structure of endangered Neofinetia falcata (Orchidaceae) in South Korea based on microsatellite analysis vol.7, pp.4, 2014, https://doi.org/10.12651/jsr.2018.7.4.354
  3. Effects of Light Condition on Growth and Physiological Characteristics of the Endangered Species Sedirea japonica under RCP 6.0 Climate Change Scenarios vol.10, pp.9, 2021, https://doi.org/10.3390/plants10091891