DOI QR코드

DOI QR Code

GENERALIZED (θ, ø)-DERIVATIONS ON BANACH ALGEBRAS

  • Received : 2014.02.19
  • Accepted : 2014.03.26
  • Published : 2014.03.30

Abstract

We introduce the concept of generalized (${\theta}$, ${\phi}$)-derivations on Banach algebras, and prove the Cauchy-Rassias stability of generalized (${\theta}$, ${\phi}$)-derivations on Banach algebras.

Keywords

References

  1. M. Ashraf, A. Ali, and S. Ali, On Lie ideals and generalized (${\theta},{\phi}$)-derivations in prime rings, Commun. Algebra 32 (2004), 2977-2985. https://doi.org/10.1081/AGB-120039276
  2. M. Ashraf, S. M. Wafa, and A. AlShammakh, On generalized (${\theta},{\phi}$)-derivations in rings, Internat. J. Math. Game Theo. Algebra 12 (2002), 295-300.
  3. C. Baak and M. S. Moslehian, On the stability of ${\theta}$-derivations on $JB^*$-triples, Bull. Braz. Math. Soc. 38 (2007), 115-127. https://doi.org/10.1007/s00574-007-0039-0
  4. C. Baak and M. S. Moslehian, On the stability of $J^*$-homomorphisms, Nonlinear Anal.-TMA 63 (2005), 42-48. https://doi.org/10.1016/j.na.2005.04.004
  5. P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436. https://doi.org/10.1006/jmaa.1994.1211
  6. B. Hvala, Generalized derivations in rings, Commun. Algebra 26 (1998), 1147-1166. https://doi.org/10.1080/00927879808826190
  7. K. Jun and Y. Lee, A generalization of the Hyers-Ulam-Rassias stability of Jensen's equation, J. Math. Anal. Appl. 238 (1999), 305-315. https://doi.org/10.1006/jmaa.1999.6546
  8. C. Park, Lie *-homomorphisms between Lie $C^*$-algebras and Lie *-derivations on Lie $C^*$-algebras, J. Math. Anal. Appl. 293 (2004), 419-434. https://doi.org/10.1016/j.jmaa.2003.10.051
  9. C. Park, Linear *-derivations on $JB^*$-algebras, Acta Math. Scientia 25 (2005), 449-454. https://doi.org/10.1016/S0252-9602(05)60008-2
  10. C. Park, Homomorphisms between Lie $JC^*$-algebras and Cauchy-Rassias stability of Lie $JC^*$-algebra derivations, J. Lie Theory 15 (2005), 393-414.
  11. C. Park and J. Hou, Homomorphisms between $C^*$-algebras associated with the Trif functional equation and linear derivations on $C^*$-algebras, J. Korean Math. Soc. 41 (2004), 461-477. https://doi.org/10.4134/JKMS.2004.41.3.461
  12. Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300. https://doi.org/10.1090/S0002-9939-1978-0507327-1
  13. Th. M. Rassias, The problem of S.M. Ulam for approximately multiplicative mappings, J. Math. Anal. Appl. 246 (2000), 352-378. https://doi.org/10.1006/jmaa.2000.6788
  14. Th. M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. 251 (2000), 264-284. https://doi.org/10.1006/jmaa.2000.7046