References
- Leong, K. F., Cheah, C. M. and Chua, C. K., 2010, "Solid Freeform Fabrication of Three-Dimensional Scaffolds for Engineering Replacement Tissues and Organs," Biomaterials, Vol. 24, pp. 2363-2378.
- Zein, I., Hutmacher, D. W., Tan, K. C. and Teoh, S. H., 2002, "Fused Deposition Modeling of Novel Scaffold Architectures for Tissue Engineering Applications," Biomaterials, Vol. 23, pp. 1169-1185. https://doi.org/10.1016/S0142-9612(01)00232-0
- Sohn, Y. S., Jung, J. W., Kim, J. Y. and Cho, D. W., 2011, "Investigation of Bi-Pore Scaffold Based on the Cell Behaviors on 3D Scaffold Patterns," Tissue Eng. Regen. Med., Vol. 8, No. Suppl. 2, pp. 66-72.
- Byun, I. S., Sarkar, S. K., Seo, H. S., Lee, B. T. and Song, H. Y., 2010, "Effect of Strontium Doped Porous BCP as Bone Graft Substitutes on Osteoblast," Korean J. Mater. Res., Vol. 20, No. 3, pp. 155-160. https://doi.org/10.3740/MRSK.2010.20.3.155
- Khang, G. S., Kim, M. S., Min, B. H., Lee, I. W., Rhee, J. M. and Lee, H, B., 2006, "Scaffolds for Tissue Engineering," Tissue Eng. Regen. Med., Vol. 3, No. 4, pp. 376-395.
- Marco, D., Dinuccio, D., Stefania, C., Michele, A., Paulo, J. B. and Federica, C., 2009, "Polycaprolactone Scaffolds Fabricated via Bioextrusion for Tissue Engineering Applications," Int. J. Biomater., Vol. 2009, 239643 (9pp).
- Hoque, M. E., Feng, W., Wong, Y. S., Hutmacher, D. W., Li, S., Huang, M. H., Vert, M., and Bartolo, P. J., 2008, "Scaffolds Designed and Fabricated with Elastic Biomaterials Applying CAD-CAM Technique," Tissue Eng. Part A, Vol. 14, No. 5, p. 907.
- Hutmacher, D. W, Schantz, I., Ng. K. W., Teoh, S. H. and Tan, K. C., 2001, "Mechanical Properties and Cell Cultural Response of Polycaprolactone Scaffolds Designed and Fabricated via Fused Deposition Modeling," J. Biomed. Mater. Res., Vol. 55, No. 2, pp. 203-216. https://doi.org/10.1002/1097-4636(200105)55:2<203::AID-JBM1007>3.0.CO;2-7
- Sa, M. W. and Kim, J. Y., 2013, "Effect of Various Blending Ratios on the Cell Characteristics of PCL and PLGA Scaffolds Fabricated by Polymer Deposition System," Int. J. Prec. Eng. Manuf., Vol. 14, No. 4, pp. 649-655. https://doi.org/10.1007/s12541-013-0087-x
- Shim, J. H., Kim, J. Y., Park, J. K., Hahn, S. K., Rhie, J. W., Kang, S. W., Lee, S. H. and Cho, D. W., 2010, "Effect of Thermal Degradation of SFF-based PLGA Scaffolds Fabricated Using a Multi-head Deposition System Followed by Change of Cell Growth Rate," J. Biomater. Sci. Polym. Ed., Vol. 21, No. 8-9, pp. 1069-1080. https://doi.org/10.1163/092050609X12457428919034
- Shim, J. H., Lee, J. S. and Kim, J. Y., 2012, "Fabrication of Solid Freeform Based 3D Scaffold and Its In-vitro Characteristic Evaluation for Bone Tissue Engineering," Tissue Eng. Regen. Med., Vol. 11, No. 3, pp. 694-701.
- Moutos, F. T., Freed, L. E. and Guilak, F., 2007, "A Biomimetic Three-dimensional Woven Composite Scaffold for Functional Tissue Engineering of Cartilage," Nat. Mater., Vol. 6, pp. 162-167. https://doi.org/10.1038/nmat1822
- Rezwan, K., Chen, Q. Z, Blaker, J. J., and Boccaccini, A. R., 2006, "Biodegradable and Bioactive Porous Polymer/inorganic Composite Scaffolds for Bone Tissue Engineering," Biomaterials, Vol. 27, pp. 4313-4331.
- Su, J., Chen, L. and Li, L., 2012, "Characterization of Polycaprolactone and Starch Blends for Potential Application within the Biomaterials Field," Afr. J. Biotechnol., Vol. 11, No. 3, pp. 694-701.
- Wilson, C. E., van Blitterswijk, C. A., Verbout, A. J., Dhert, W. J. A. and de Bruijin, J. D., 2011, "Scaffolds with a Standardized Macro-architecture Fabricated from Several Calcium Phosphate Ceramics using an Indirect Rapid Prototyping Technique," J. Mater. Sci. Mater. Med., Vol. 22, pp. 97-105. https://doi.org/10.1007/s10856-010-4183-5
- Dorozhkin, S. V., 2010, "Bioceramics of Calcium Orthophosphates," Biomaterials, Vol. 31, pp. 1465-1485. https://doi.org/10.1016/j.biomaterials.2009.11.050
- Bellucci, D., Sola, A. and Cannillo, V., 2011, "A Revised Replication Method for Bioceramic Scaffolds," Bioceram. Dev. Appl., Vol. 1, D110401 (8pp).
- Franco, J., Hunger, P., Launey, M. E., Tomsia, A. P. and Saiz, E., 2010, "Direct Write Assembly of Calcium Phosphate Scaffolds Using a Water-Based Hydrogel," Acta Biomater., Vol. 6, pp. 218-228. https://doi.org/10.1016/j.actbio.2009.06.031
- Seol, Y. J., Park, D. Y., Park, J. Y., Kim, S. W., Park, S. J. and Cho, D. W., 2013, "A New Method of Fabricating Robust Freeform 3D Ceramic Scaffolds for Bone Tissue Regeneration," Biotechnol. Bioeng., Vol. 110, No. 5, pp. 1444-1455. https://doi.org/10.1002/bit.24794
- Yunos, D. M., Bretcanu, O. and Boccaccini, A. R., 2008, "Polymer-bioceramic Composites for Tissue Engineering Scaffolds," J. Mater. Sci., Vol. 43, No. 13, pp. 4433-4442. https://doi.org/10.1007/s10853-008-2552-y
- Yefang, Z., Hutmacher, D. W., Varawan, S. L. and Meng, L. T., 2007, "Comparison of Human Alveolar Osteoblasts Cultured on Polymer-ceramic Composite Scaffolds and Tissue Culture Plates," Int. J. Oral Maxillofac. Surg., Vol. 36, pp. 137-145. https://doi.org/10.1016/j.ijom.2006.08.012
- Tripathi, G. and Basu, B., 2012, "A Porous Hydroxyapatite Scaffold for Bone Tissue Engineering: Physico-Mechanical and Biological Evaluations," Ceram. Int., Vol. 38, pp. 341-349. https://doi.org/10.1016/j.ceramint.2011.07.012
- Hench, L. L., and Wilson, J., 1993, "An Introduction to Bioceramics," Academic Press, Vol. 12.
- Chung, H. S., Jee, H. S. and Das, S., 2010, "Selective Laser Sintering of PCL/TCP Composites for Tissue Engineering Scaffolds," J. Mech. Sci. Technol., Vol. 24, pp. 241-244. https://doi.org/10.1007/s12206-009-1141-6
-
Lu, L., Zhang, Q., Wootton, D., Chiou, R., Li, D., Lu, B., Lelkes, P. and Zhou, J., 2012, "Biocompatibility and Biodegradation Studies of PCL/
${\beta}$ -TCP Bone Tissue Scaffold Fabricated by Structural Porogen Method," J. Mater. Sci. Mater. Med., Vol. 23, pp. 2217-2226. https://doi.org/10.1007/s10856-012-4695-2 - Yeo, A., Check, C., Teoh, S. H., Zhang, Z. Y., Buser, D. and Bosshardt, D. D., 2011, "Lateral Ridge Augmentation Using a PCL-TCP Scaffold in a Clinically Relevant but Challenging Micro Pig Model," Clin. Oral Implants Res., Vol. 23, pp. 1322-1332.
- Sa, M. W. and Kim, J. Y., 2013, "A Study on Fabrication of 3D Scaffolds Using Bio-Ceramic Fabrication System Based on Solid Free-Form Fabrication Technique," Tissue Eng. Regen. Med., Vol. 10, No. Suppl. 2, pp. 56-61.
- Lee, J. S., Cha, H. D., Shim, J. H., Jung, J. W., Kim, Y. Y. and Cho, D. W., 2012, "Effect of Pore Architecture and Stacking Direction on Mechanical Properties of Solid Freeform Fabrication-based Scaffold for Bone Tissue Engineering," J. Biomed. Mater. Res. Part A, Vol. 100A, pp. 1846-1853.
-
Ryu, H. S., Youn, H. J., Hong, K. S., Chang, B. S., Lee, C. K. and Chung, S. S., 2002, "An Improvement in Sintering Property of
${\beta}$ -Tricalcium Phosphate by Addition of Calcium Pyrophosphate," Biomaterials, Vol. 23, pp. 909-914. https://doi.org/10.1016/S0142-9612(01)00201-0 -
Miranda, P., Saiz, E., Gryn, K. and Tomsia, A. P., 2005, "Sintering and Robocasting of
${\beta}$ -Tricalcium Phosphate Scaffolds for Orthopedic Applications," Acta Biomater., Vol. 2, pp. 457-466. - Wu, Q., Zhang, X., Wu, B. and Huang W., 2013, "Effects of Microwave Sintering on the Properties of Porous Hydroxyapatite Scaffolds," Ceram. Int., Vol. 39, pp. 2389-2395. https://doi.org/10.1016/j.ceramint.2012.08.091
- Lee, S. H., Park, S. A. and Kim, W. D., 2010, "Fabrication of Porous 3D PCL Scaffold Using Rapid Prototyping System," Tissue Eng. Regen. Med., Vol. 7, No. 2, pp. 211-216.