DOI QR코드

DOI QR Code

Thermoluminescence of Rb2LiCeCl6 Halide Scintillator

Rb2LiCeCl6 할라이드 섬광체의 열형광 특성

  • Kim, Sunghwan (Cheongju University, Department of Radiological Science)
  • Received : 2014.01.06
  • Accepted : 2014.02.05
  • Published : 2014.02.28

Abstract

We developed a new $Rb_2LiCeCl_6$ scintillator and determined the scintillation and thermoluminescence properties of the scintillator. The emission spectrum of $Rb_2LiCeCl$ is located in the range of 350 ~ 410 nm, peaking at 368 nm and 378 nm, due to the 4f ${\rightarrow}$ 5d transition of $Ce^{3+}$ ions. The fluorescence decay time of the crystal is composed two components. The fast component is 71 ns (85%) and the slow component is 405 ns (15%) of the crystal. The after-glow is caused by the electron and hole traps in the crystal lattice. We determined physical parameters of the traps in the crystal. The determined activation energy(E), kinetic order(m) and frequency factor(s) of the trap are 0.75 eV, 1.48 and $3.0{\times}10^8s^{-1}$, respectively.

본 논문에서는 신소재 $Rb_2LiCeCl_6$ 할라이드 섬광체를 개발하고, 개발된 섬광체의 섬광 및 열형광 특성에 대하여 조사하였다. $Rb_2LiCeCl_6$의 섬광스펙트럼은 $Ce^{3+}$ 이온의 4f ${\rightarrow}$ 5d 천이에 따라 파장범위가 350~410 nm, 피이크 파장은 368 nm 및 378 nm이었다. 섬광감쇠시간 특성은 71 ns의 빠른 시간 특성 성분(85%)과 405 ns의 느린 성분(15%)의 2개로 구성되며, 잔광에 기여한 포획준위의 물리적 변수를 열형광 측정법에서 분석한 결과, 포획 준위의 활성화에너지, 발광차수 및 주파수 인자의 평균값은 각각 0.75 eV, 1.48 및 $3.0{\times}10^8s^{-1}$이었다.

Keywords

References

  1. Carel W.E. van Eijk, "Fast scintillators and their applications", Nucl. Tracks and Rad. Meas., Vol.21, pp.5-10, 1993. DOI: http://dx.doi.org/10.1016/1359-0189(93)90035-8
  2. S.F. Jackson, S.D. Monk, K. Lennox, "Testing of a scintillator and fiber optic based radiation sensor", Rad. Meas. Vol.59, pp.50-58, 2013. DOI: http://dx.doi.org/10.1016/j.radmeas.2013.10.006
  3. Makoto Sugiyama, Yutaka Fujimoto, Takayuki Yanagida, Daisuke Totsuka, Valery Chani, Yuui Yokota, Akira Yoshikawa, "Nd-doped $Lu_3Al_5O_{12}$ single crystal scintillator for X-ray imaging", Rad. Meas., Vol.55, pp.103-107, 2013. DOI: http://dx.doi.org/10.1016/j.radmeas.2012.07.011
  4. Raffaele Scafe, Roberto Pani, Rosanna Pellegrini, Giorgia Iurlaro, Livia Montani, Maria Nerina Cinti, "Si-APD readout for $LaBr_3$:Ce scintillator", Nucl. Instr. Meth. in Phys. Res. Sec. A, Vol.571, pp.355-357, 2007. https://doi.org/10.1016/j.nima.2006.10.108
  5. Vladimir Rusinov, "Scintillator strip detector with SiPM readout as detector for a TOF system", Nucl. Instr. Meth. in Phys. Res. Sec. A, Vol.623, pp.380-381, 2010. https://doi.org/10.1016/j.nima.2010.03.008
  6. B.C. Grabmaier, W. Rossner, "New scintillators for X-ray computed tomography", Nucl. Tracks and Rad. Meas., Vol.21, pp.43-45, 1993. DOI: http://dx.doi.org/10.1016/1359-0189(93)90043-9
  7. C.W.E. van Eijk, P. Dorenbos, E.V.D. van Loef, K. Kramer, H.U. Gudel, "Energy resolution of some new inorganic-scintillator gamma-ray detectors", Rad. Meas., Vol.33, pp.521-525, 2001. DOI: http://dx.doi.org/10.1016/S1350-4487(01)00045-2
  8. R. Shendrik, E.A. Radzhabov, A.I. Nepomnyashchikh, "Scintillation properties of pure and $Ce^{3+}$-doped $SrF_2$ crystals", Rad. Meas., Vol.56, pp.58-61, 2013. DOI: http://dx.doi.org/10.1016/j.radmeas.2013.01.054
  9. K. Sreebunpeng, W. Chewpraditkul, M. Nikl, "Luminescence and scintillation properties of advanced $Lu_3Al_5O_{12}:Pr^{3+}$ single crystal scintillators", Rad. Meas., Vol.60, pp.42-45, 2014. DOI: http://dx.doi.org/10.1016/j.radmeas.2013.11.009
  10. L. M. Bollinger, G. E. Thomas, "Measurement of the time dependence of scintillation intensity by a delayed-coincidence method", Rev. Sci. Instr., Vol.32, pp.1044-1050, 1961. DOI: http://dx.doi.org/10.1063/1.1717610
  11. Rene Brun, Fons Rademakers, ROOT user guide, CERN, 2013, http://root.cern.ch/drupal/content/users-guide
  12. H. Kunkely and A. Vogler, "Can halides serve as a charge transfer acceptor? Metal-centered and metal-to-ligand charge transfer excitation of cerium(III) halides," Inorganic Chem. Comm., Vol.9, pp.1-3, 2006. DOI: http://dx.doi.org/10.1016/j.inoche.2005.08.017
  13. R. Chen, Analysis of thermally stimulated process, 37, Pergamon Press, Oxford, 1981.
  14. R. Chen, "Glow curves with general order kinetics", J. Electrochem. Soc., Vol.116, pp.1254-1257, 1969. DOI: http://dx.doi.org/10.1149/1.2412291
  15. K.S. Chung, H.S. Choe, J.I. Lee, J.L. Kim, "An algorithm for the deconvolution of the optically stimulated luminescence glow curves involving the mutual interactions among the electron traps", Rad. Meas., Vol.46, pp.1598-1601, 2011. DOI: http://dx.doi.org/10.1016/j.radmeas.2011.05.071
  16. A.S. Pradhan, J.I. Lee, K.S. Chung, H.S. Choe, K.S. Lim, "TL glow curve shape and response of LiF:Mg,Cu,Si-effect of heating rate", Rad. Meas., Vol.43, pp.361-364, 2008. https://doi.org/10.1016/j.radmeas.2007.10.016