DOI QR코드

DOI QR Code

Photocatalytic disinfection of indoor suspended microorganisms (Escherichia coli and Bacillus subtilis spore) with ultraviolet light

광촉매와 UVA에 의한 실내 부유 미생물(E. coli 및 Bacillus. subtilis sp.) 살균 제거 연구

  • Yoon, Young H. (Environmental Engineering Research Division, Korea Institute of Construction & Technology) ;
  • Nam, Sook-Hyun (Environmental Engineering Research Division, Korea Institute of Construction & Technology) ;
  • Joo, Jin-Chul (Environmental Engineering Research Division, Korea Institute of Construction & Technology) ;
  • Ahn, Ho-Sang (Environmental Engineering Research Division, Korea Institute of Construction & Technology)
  • 윤영한 (한국건설기술연구원 수자원환경연구본부 환경연구실) ;
  • 남숙현 (한국건설기술연구원 수자원환경연구본부 환경연구실) ;
  • 주진철 (한국건설기술연구원 수자원환경연구본부 환경연구실) ;
  • 안호상 (한국건설기술연구원 수자원환경연구본부 환경연구실)
  • Received : 2013.10.23
  • Accepted : 2014.02.05
  • Published : 2014.02.28

Abstract

New control methods are proposed for indoor air quality by removing fine airborne dust-particles. As suspended fine dust-particles contain inorganic dust as well as fine organic bacteria, studies for simultaneous control of these contaminants are required. In this study, photocatalytic disinfection of indoor suspended microorganisms such as E. coli and Bacillus subtilis is performed by three types of photocatalysts with UVA irradiation. The UVA irradiation strength was controlled to the minimum $3{\mu}W/cm^2$, and ZnO, $TiO_2$, and ZnO/Laponite ball were used as the catalysts. The results indicate that E. coli was removed over 80 % after about 2 hours of reaction with UVA and all three types of photocatalysts, whereas only with UVA, around 50 % E. coli removal was obtained. Among the catalysts, ZnO/Laponite composite ball was found to have similar sterilizing capacity to $TiO_2$. However, in case of B. subtilis, which has thick cell wall in its spore state, disinfection was not effective under the low UVA irradiation condition, even with the catalysts. Further studies need to figure out the optimal UVA irradiation ranges as well as photocatalysts doses to control airborne dust, to provide healthy clean air environment.

실내공기 오염물질의 제어를 통하여 공기질을 개선시킬 수 있는 요소기술의 개발을 위하여 미세부유먼지 제거방법을 도출하고자 하였다. 미세부유먼지 중에는 분진과 같은 무기물과 박테리아와 같은 작은 유기물도 포함되어 있어 이들의 동시 제거를 위한 연구가 필요하다. 본 연구에서는 광촉매 및 UVA에 의한 미세부유먼지 중 미생물 제거 기술의 개발을 위하여 여러 종류의 광촉매에 대한 미생물 살균율을 조사하였다. 이를 위하여 3가지 종류의 광촉매(ZnO, $TiO_2$, ZnO/Laponite ball)와 최소한의 UVA 자외선 조사량 3 (${\mu}W/cm^2$)을 이용하여 실내공기 부유미생물의 지표로 사용되는 Gram 양성균인 E. Coli와 Gram 음성균인 Bacillus. subtilis sp.에 대하여 살균실험을 진행하였다. 실험결과, 최소한의 UVA 자외선 조사량에서도 광촉매제와 함께 두 시간 정도 반응하였을 때 E-Coli의 경우 세 가지 광촉매제 모두에서 80 % 이상 사멸되는 것으로 나타났으며, UVA 단독 사용보다는 약 30 % 높은 사멸률을 보였다. 광촉매제 중에는 ZnO/Laponite ball 복합체의 경우에 $TiO_2$와 동등한 살균력이 있는 것으로 나타났다. 하지만, 포자상태에서 강한 외벽을 가지고 있는 B. subtilis sp.의 경우는 낮은 자외선 조사량으로는 살균효과가 저하되기 때문에 살균율을 높일 수 있는 최적의 촉매제 종류와 첨가량 및 자외선 조사량을 찾아야 할 것으로 판단된다.

Keywords

References

  1. H. N. Kundsen, U. D. Kjaer, P. A. Nielsen, and P. Wolkoof, "Sensory and chemical characterization of VOC emissions from building products impact of concentration and air velocity", Atoms. Environ., Vol. 33, pp. 1217-1230, 1999. DOI: http://dx.doi.org/10.1016/S1352-2310(98)00278-7
  2. S. R. Won, J. Y. Lim, I. K. Shim, E. J. Kim, A. R. Choi, J. S. Han and W. S. Lee, "Characterization of PM2.5 and PM10 concentration distribution at public facilities in Korea", Journal of Korean Society for Indoor Environment, Vol. 9, No. 3, pp. 229-238, 2012.
  3. H. Burge, "Bioaerosols: Prevalence and health effects in the indoor environment", Journal of Allergy and Clinical Immunology, Vol. 86, No. 5, pp. 687-701, 1990. DOI: http://dx.doi.org/10.1016/S0091-6749(05)80170-8
  4. J. L. Sagripanti and A. Bonifacino, "Bacterial spores survive treatment with commercial sterilants and disinfectants", Appl. Environ. Microbiol., Vol. 65, No. 9, pp. 4255-4260, 1999.
  5. D. F. Ollis, "Photocatalytic purification and remediation of contaminated Air and Water", Chemistry 3, pp. 405. 2000.
  6. A. Fujishima, K. Hashimoto and T. Watanabe, The mechanism of photocatalyst, Nippon Jitsugyo Publishing, 2002.
  7. C. Y. Lin and C. S. Li, "Inactivation of microorganisms on the photocatalytic surfaces in air", Aerosol Science and Technology, Vol. 37, pp. 939-946. 2003. DOI: http://dx.doi.org/10.1080/02786820300900
  8. H. Yang, G. Li, Y. Gao and J. Fu, "Photocatalytic degradation kinetics and mechanism of environmental pharmaceuticals in aqueous suspension of $TiO_2$: A case of sulfa drugs", Catalysis Today. Vol. 153, pp. 200-207, 2010. DOI: http://dx.doi.org/10.1016/j.cattod.2010.02.068
  9. H. L. Liu and T. C.-K. Yang, "Photocatalytic inactivation of Escherichia coli and Lactobacillus helveticus by ZnO and $TiO_2$ activated with ultraviolet light", Process Biochemistry, Vol. 39, pp. 475-481. 2003. DOI: http://dx.doi.org/10.1016/S0032-9592(03)00084-0
  10. O. Seven, B. Dindar, S. Aydemir, D. Metin, M. A. Ozinel and S. Icli, "Solar photocatalytic disinfection of a group of bacteria and fungi aqueous suspensions with $TiO_2$, ZnO and Sahara desert dust", Journal of Photochemistry and Photobiology A: Chemistry, Vol. 165, pp. 103-107. 2004. DOI: http://dx.doi.org/10.1016/j.jphotochem.2004.03.005
  11. J. Zhao, V. Krishna, B. Hua, B. Moudgil and B. Koopman, "Effect of UVA irradiance on photocatalytic and UVA inactivation of Bacillus cereus spores", J. of photochemistry and photobiology B; Biology, Vol. 94, pp. 96-100. 2009. DOI: http://dx.doi.org/10.1016/j.jphotobiol.2008.10.006
  12. A. Vohra, D. Y. Goswami, D. A. Deshpande and S. S. Block, "Enhanced photocatalytic disinfection of indoor air", Applied Catalysis B: Environmental, Vol. 65, pp. 57-65. 2006. DOI: http://dx.doi.org/10.1016/j.apcatb.2005.10.025
  13. S. Sontakke, C. Mohan, J. Modak, and G. Madras, "Visible light photocatalytic inactivation of Escherichia coli with combustion synthesized TiO", Chemical Engineering Journal 189-190, Vol. 165 pp. 101-107. 2012. DOI: http://dx.doi.org/10.1016/j.cej.2012.02.036
  14. M. Cho, J. H. Kim and J. Yoon, "Investigating synergism during sequential inactivation of Bacillus subtilis spores with several disinfectants", Water Res., Vol. 40, pp. 2911-2920. 2006. DOI: http://dx.doi.org/10.1016/j.watres.2006.05.042
  15. C. S. Cockell, P. Rettberg, G. Horneck, D. D. Wynn-Williams, K. Scherer and A. Gugg-Helminger, "Influence of ice and snow covers on the UV exposure of terrestrial microbial communities: dosimetric studies", Journal of Photochemistry and Photobiology B: Biology, Vol. 68, pp. 23-32, 2002. DOI: http://dx.doi.org/10.1016/S1011-1344(02)00327-5
  16. Z. Fan, and J. G Lu, "Zinc Oxide Nanostructures: Synthesis and Properties", Journal of Nanoscience and Nanotechnology, Vol. 5, No. 10, pp. 1561-1573, 2005. DOI: http://dx.doi.org/10.1166/jnn.2005.182
  17. American Public Health Association (APHA); American Water Works Association(AWWA); Water Environment Federation(WEF). Standard Methods for the Examination of Water and Wastewater 1998; 0th ed., American Public Health Association, Washington DC.
  18. O. K. Dalrymple, E. Stefanakos, M. A. Trotz, D. Y. Goswami, "A review of the mechanisms and modeling of photocatalytic disinfection, Applied Catalysis B: Environmental, 98, pp. 27-38, 2010. DOI: http://dx.doi.org/10.1016/j.apcatb.2010.05.001