• Title/Summary/Keyword: scintillator

Search Result 276, Processing Time 0.033 seconds

Development of Sensitivity-Enhanced Detector using Pixelization of Block Scintillator with 3D Laser Engraving (3차원 레이저 각인으로 블록형 섬광체의 픽셀형화를 통한 민감도 향상 검출기 개발)

  • Lee, Seung-Jae;Baek, Cheol-Ha
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.2
    • /
    • pp.313-318
    • /
    • 2019
  • To improve the sensitivity, a detector using a block scintillator was developed. In the pixelated scintillator, a reflector is located between pixels to move the light generated from the scintillator to the photosensor as much as possible, and sensitivity loss occurs in the reflector portion. In order to improve the sensitivity and to have the characteristics of the pixelated scintillator, the block scintillator was processed into a scintillator in pixel form through three-dimensional laser engraving. The energy spectra and energy resolution of each pixel were measured, and sensitivity analysis of block and pixel scintillator was performed through GATE simulation. The measured global energy resolution was 20.7%, and the sensitivity was 18.5% higher than that of the pixel scintillator. When this detector is applied to imaging devices such as gamma camera and positron emission tomography, it will be possible to shorten the imaging time and reduce the dose of patient by using less radiation source.

Digital n-γ Pulse Shape Discrimination in Organic Scintillators with a High-Speed Digitizer

  • Kim, Chanho;Yeom, Jung-Yeol;Kim, Geehyun
    • Journal of Radiation Protection and Research
    • /
    • v.44 no.2
    • /
    • pp.53-63
    • /
    • 2019
  • Background: As neutron fields are always accompanied by gamma rays, it is essential to distinguish neutrons from gamma rays in the detection of neutrons. Neutrons and gamma rays can be separated by pulse shape discrimination (PSD) methods. Recently, we performed characterization of a stilbene scintillator detector and an EJ-301 liquid scintillator detector with a high-speed digitizer DT5730 and investigated optimized PSD variables for both detectors. This study is for providing a basis for developing fast neutron/gamma-ray dual-particle imager. Materials and Methods: We conducted PSD experiments using stilbene scintillator and EJ-301 liquid scintillator and evaluated neutron and gamma ray discriminability of each PSD method with a $^{137}Cs$ gamma source and a $^{252}Cf$ neutron source. We implemented digital signal processing techniques to apply two PSD methods - the charge comparison (CC) method and the constant time discrimination (CTD) method - to distinguish neutrons from gamma rays. We tried to find optimized PSD variables giving the best discriminability in a given experimental condition. Results and Discussion: For the stilbene scintillator detector, the charge comparison method and the constant time discrimination method both delivered the PSD FOM values of 1.7. For the EJ-301 liquid scintillator detector, both PSD methods delivered the PSD FOM values of 1.79. With the same PSD variables, PSD performance was excellent in $300{\pm}100keVee$, $500{\pm}100keVee$, and $700{\pm}100keVee$ energy regions. This result shows that we can achieve an effective discrimination of neutrons from gamma rays using these scintillator detector systems. Conclusion: We applied both PSD methods to a stilbene and a liquid scintillator and optimized the PSD performance represented by FOM values. We observed a good separation performance of both scintillators combined with a high-speed digitizer and digital PSD. These results will provide reference values for the dual-particle imager we are developing, which can image both fast neutrons and gamma rays simultaneously.

Development of an Organic Scintillator Sensor for Radiation Dosimetry using Transparent Epoxy Resin and Optical Fiber (투명 에폭시와 광섬유를 이용한 방사선량 측정용 유기섬광체 센서 개발)

  • Park, Chan-Hee;Seo, Bum-Kyoung;Lee, Dong-Gyu;Lee, Kune-Woo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.7 no.2
    • /
    • pp.87-92
    • /
    • 2009
  • Remote detecting system for a radiation contamination using a plastic scintillator and an optical fiber was developed. Using a commercially available silica optical fiber and a plastic scintillator, we tested then for a real possibility as a remote monitoring detector. Also, a plastic scintillator was developed by itself, and evaluated as a radiation sensor. The plastic scintillator was made of epoxy resin, a hardener and an organic scintillation material. The mixture rate of the epoxy resin, hardener and organic scintillator was fixed by using their emission spectrum, transmittance, intensity etc. In this study, in order to decrease the light loss of an incomplete connection between an optical fiber and a scintillator, the optical fiber was inserted into the scintillator during the fabrication process. The senor used a plastic optical fiber and was estimated for its detection efficiency by an optic fiber's geometric factor.

  • PDF

Fabrication and Evaluation of CdS/ZnS Quantum Dot Based Plastic Scintillator (CdS/ZnS 양자점 기반 플라스틱 섬광체 제작 및 성능평가)

  • Min, Su Jung;Kang, Ha Ra;Lee, Byung Chae;Seo, Bum Kyung;Cheong, Jae Hak;Roh, Changhyun;Hong, Sang Bum
    • Korean Chemical Engineering Research
    • /
    • v.59 no.3
    • /
    • pp.450-454
    • /
    • 2021
  • Currently, gamma nuclide analysis is mainly used using inorganic scintillators or semiconductor detectors. These detectors have high resolution but there are less economical, limited in size, and low process ability than plastic scintillators. Therefore, quantum dot-based plastic scintillator was developed using the advantages of the quantum dot nanomaterial and the conventional plastic scintillator. In this study, efficient plastic scintillator was fabricated by adding CdS/ZnS based on the most widely used Cd-based nanomaterial in a polystyrene matrix. In addition, the performance of the commercial plastic scintillator was compared and it was analyzed through radiological measurement experiments. The detection efficiency of fabricated plastic scintillator was higher than commercial plastic scintillator, EJ-200. It is believed that this fabricated plastic scintillator can be used as a radioactivity analyzer in the medical and nuclear facility fields.

Study on preparation of a thin film type of ZnS(Ag) scintillator sheet for alpha-ray detection (얇은 필름 형태의 알파선 측정용 ZnS(Ag) 섬광 검출소재 제조 연구)

  • Seo, Bum-Kyoung;Jung, Yeon-Hee;Kim, Gye-Hong;Lee, Kune-Woo;Jung, Chong-Hun;Han, Myeong-Jin
    • Analytical Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.389-393
    • /
    • 2006
  • The detector consisted of ZnS(Ag) scintillator and photomultiplier tube (PMT) is widely used as contamination monitor in the nuclear facilities. Such detectors are mainly manufactured by adhering the ZnS(Ag) powder onto the transparent plastic. In this study the preparation condition for ZnS(Ag) scintillator sheet using a simple method was established. The scintillator sheet was composed with a support polymer sheet and ZnS(Ag) scintillator layer. The base sheet was prepared by casting the polymer solution after solving the polymer with solvent and the scintillator layer was manufactured by printing the mixture solution with ZnS(Ag) and paste. It was found that the polysulfone(PSf) as a polymer for the base sheet and a cyano resin as a paste for adhering the ZnS(Ag) scintillator was suitable. Also, the prepared thin scintillator sheet had a sufficient mechanical strength, a optical transparency and an alpha-ray detection performance.

Scintillation Properties of Acrylate Based Plastic Scintillator by Photoploymerization Method (아크릴레이트 기반 광중합 플라스틱 섬광체의 섬광 특성)

  • Kim, Sunghwan;Lee, JoonIl
    • Journal of radiological science and technology
    • /
    • v.39 no.4
    • /
    • pp.637-642
    • /
    • 2016
  • In this study, we prepared and characterized a acrylate based UV-curable plastic scintillator. It was used co-polymers TMPTA, DHPA and Ultima $Gold^{TM}$ LLT organic scintillator. The emission spectrum of the plastic scintillator was located in the range of 380~520 nm, peaking at 423 nm. And the scintillator is more than 50% transparent in the range of 400~800 nm. The emission spectrum is well match to the quantum efficiency of photo-multiplier tube and the fast decay time of the scintillation is 12 ns, approximately. This scintillation material provides the possibility of combining 3D printing technology, and then the applications of the plastic scintillator may be expected in human dosimetry etc.

Optimization of the Wavelength Shifter Ratio in a Polystyrene Based Plastic Scintillator through Energy Spectrum Analysis (에너지스펙트럼 분석을 통한 폴리스타이렌 기반 플라스틱 섬광체의 파장쉬프터 비율 최적화)

  • Kim, Yewon;Moon, Myungkook;Kim, Myung Soo;Yoo, Hyunjun;Lee, Daehee;Cho, Gyuseong
    • Journal of Radiation Industry
    • /
    • v.10 no.4
    • /
    • pp.167-171
    • /
    • 2016
  • The scintillation efficiency of the polystyrene based plastic scintillator depends on the ratio of the wavelength shifters, organic fluors(PPO and POPOP). Thus, 24 samples of the plastic scintillator were fabricated in order to find out the optimum ratio of the wavelength shifters in the plastic scintillator. The fabricated plastic scintillators were trimmed through a cutting and polishing process. They were used in gamma energy spectrum measurement with the $^{137}Cs$ emitting mono-energy photon with 662 keV for the comparison of the scintillation efficiency. As a result, it was found out that the scintillator sample with 1.00 g of PPO (2,5-Diphenyloxazole) and 0.50 g of POPOP (1,4-Bis(5-phnyl-2oxidazolyl)benzene) dissolved in 100 g of styrene solution has the optimum ratio in terms of the light yield of the polystyrene based plastic scintillator.

Labeling strategy to improve neutron/gamma discrimination with organic scintillator

  • Ali Hachem;Yoann Moline;Gwenole Corre;Bassem Ouni;Mathieu Trocme;Aly Elayeb;Frederick Carrel
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4057-4065
    • /
    • 2023
  • Organic scintillators are widely used for neutron/gamma detection. Pulse shape discrimination algorithms have been commonly used to discriminate the detected radiations. These algorithms have several limits, in particular with plastic scintillator which has lower discrimination ability, compared to liquid scintillator. Recently, machine learning (ML) models have been explored to enhance discrimination performance. Nevertheless, obtaining an accurate ML model or evaluating any discrimination approach requires a reference neutron dataset. The preparation of this is challenging because neutron sources are also gamma-ray emitters. Therefore, this paper proposes a pipeline to prepare clean labeled neutron/gamma datasets acquired by an organic scintillator. The method is mainly based on a Time of Flight setup and Tail-to-Total integral ratio (TTTratio) discrimination algorithm. In the presented case, EJ276 plastic scintillator and 252Cf source were used to implement the acquisition chain. The results showed that this process can identify and remove mislabeled samples in the entire ToF spectrum, including those that contribute to peak values. Furthermore, the process cleans ToF dataset from pile-up events, which can significantly impact experimental results and the conclusions extracted from them.

Development of ZnS(Ag)/plastic dual scintillator sheet for simultaneous alpha- and beta-ray counting (알파 및 베타선 동시측정용 ZnS(Ag)/플라스틱 이중섬광체 검출센서 개발)

  • Seo, Bum-Kyoung;Woo, Zu-Hee;Kim, Gye-Hong;Lee, Kune-Woo;Lee, Dong-Gyu;jung, Chong-Hun
    • Analytical Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.117-122
    • /
    • 2008
  • Dual scintillator for simultaneous alpha- and beta-ray counting used by detection materials of a surface contamination monitor was developed. In this study, preparation method was not a heat melting method but a solvent method, by which the counting material was manufactured by dissolving the polymer materials with solvent. It was simplified the preparation process. Plastic scintillator for beta-ray counting was prepared by solidifying the casting solution mixed with organic scintillator, polymer, and solvent. ZnS(Ag) scintillator layer was prepared by screen printing the paste solution mixed with ZnS(Ag), paste, and solvent onto the plastic layer. The good counting ability for alpha- and beta-ray using the ZnS(Ag)/plastic dual scintillator prepared and possibility for the counting material of surface contamination monitor was confirmed.

Characteristics of the Contact Angle Using the Microwave Plasma Treatment on Scintillator Panel Substrates (마이크로웨이브 플라즈마 처리를 통한 섬광체 패널 기판의 접촉가 특성변화)

  • Kim, Byoungwook;Kim, Youngju;Ryu, Cheolwoo;Choi, Byoungjung;Kwon, Youngman;Lee, Youngchoon;Kim, Myungsoo;Cho, Gyuseong
    • Journal of Radiation Industry
    • /
    • v.8 no.1
    • /
    • pp.43-47
    • /
    • 2014
  • By measuring decrease change of the contact angle after microwave plasma treatment on the glass and Al as a scintillator panel sample substrate, the adhesive performance of scintillator panel can be expected to improve. Also resolution and sensitivity of scintillator panel after microwave plasma treatment can be expected to maintain highly.