DOI QR코드

DOI QR Code

빠른 Lock-Time을 위한 다중 이득 제어 디지털 위상 주파수 검출기

A Multiple Gain Controlled Digital Phase and Frequency Detector for Fast Lock-Time

  • 홍종필 (충북대학교 전자정보대학 전기공학부)
  • Hong, Jong-Phil (Department of Electrical Engineering, Chungbuk National University)
  • 투고 : 2013.11.09
  • 발행 : 2014.02.25

초록

본 논문은 다중 이득 제어를 통하여 빠른 lock-time을 갖는 디지털 위상 주파수 검출기 회로를 제안한다. 기준신호와 피드백 신호의 위상 차이가 클 때, 위상 차이가 적으면서 lock에 근접했을 때, lock 이후의 세 경우에 따라 디지털 위상 동기 루프의 이득을 다르게 설정하여 lock-time을 효과적으로 줄일 수 있다. 시뮬레이션 결과를 통해 제안된 기법을 적용함으로써 기존의 단일 이득 제어 구조보다 lock-time을 약 100배 개선시킬 수 있음을 확인하였다.

This paper presents a multiple gain controlled digital phase and frequency detector with a fast lock-time. Lock-time of the digital PLL can be significantly reduced by applying proposed adaptive gain control technique. A loop gain of the proposed digital PLL is controlled by three conditions that are very large phase difference between reference and feedback signal, small phase difference and before lock-state, and after lock-state. The simulation result shows that lock-time of the proposed multiple gain controlled digital PLL is 100 times faster than that of the conventional structure with unit gain mode.

키워드

참고문헌

  1. A. A. Abidi, "RF CMOS comes of age," IEEE Journal of Solid-State Circuits, vol. 39, no. 4, pp 549-561, Apr. 2004 https://doi.org/10.1109/JSSC.2004.825247
  2. Jong-Phil Hong, et al., "0.004 $mm^2\;250{\mu}W\;{\Delta}{\Sigma}$ TDC with time-difference accumulator and a $0.012mm^2$ 2.5mW bang-bang digital PLL using PRNG for low power SoC applications," in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2012, pp. 240-242
  3. J. A. Tierno, A. V. Rylyakov, and D. J. Friedman, "A wide power supply range, wide tuning range, all static CMOS all digital PLL in 65 nm SOI," IEEE Journal of Solid-State Circuits, vol. 43, no. 1, pp. 42-51, Jan. 2008 https://doi.org/10.1109/JSSC.2007.910966
  4. A. V. Rylyakov, et al., "A modular all-digital PLL architecture enabling both 1-to-2GHz and 24-to-32GHz operation in 65nm CMOS," in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2008, pp. 516-517.
  5. A. Da Dalt, "Linearized analysis of a digital bang-bang PLL and its validity limits applied to jitter transfer and jitter generation," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 55, no. 11, pp. 3663-3675, Dec. 2008. https://doi.org/10.1109/TCSI.2008.925948
  6. M. Zanuso, et al "Noise analysis and minimization in bang-bang digital PLLs," IEEE Transaction of Circuits and Systems-II, Vol. 56, No. 11, pp. 835-839, Nov. 2009. https://doi.org/10.1109/TCSII.2009.2032470
  7. Y. S. Son, et al., "A 0.4 2GHz, Seamless Frequency Tracking Controlled Dual Loop Digital PLL," Journal of the institute of Electronics and Information Engineers, vol.45, SD, no.12, pp. 65-72, Dec. 2008.
  8. J. H. Lee and T. W. Ahn, "A Study on the Design of Low Power Digital PLL," Journal of the institute of Electronics and Information Engineers, vol.47, IE, no.2, pp. 1-7, June, 2010.
  9. Perrott, M. H., "CppSim system simulator package," http:// www. cppsim.com
  10. Perrott, M. H., "Fast and accurate behavioral simulation of fractional-N frequency synthesizers and other PLL/DLL circuits," Design Automation Conference, June, 2002.
  11. N. August, H. J. Lee, M. Vandepas, and R. Parker, "A TDC-less ADPLL with 200-to-3200MHz range and 3mW power dissipation for mobile SoC clocking in 22nm CMOS," in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2012, pp. 246-247