DOI QR코드

DOI QR Code

모바일 증강현실을 이용한 작업자 중심의 폐색된 건축물 시각화 시스템 개발

Implementation of Constructor-Oriented Visualization System for Occluded Construction via Mobile Augmented-Reality

  • 김태호 (중앙대학교 첨단영상대학원 영상공학과) ;
  • 김경호 (중앙대학교 첨단영상대학원 영상공학과) ;
  • 한윤상 (중앙대학교 첨단영상대학원 영상공학과) ;
  • 이석한 (중앙대학교 첨단영상대학원 영상공학과) ;
  • 최종수 (중앙대학교 첨단영상대학원 영상공학과)
  • Kim, Tae-Ho (Graduate School of Advanced Imaging Science, Multimedia, and Film. Chung-Ang University) ;
  • Kim, Kyung-Ho (Graduate School of Advanced Imaging Science, Multimedia, and Film. Chung-Ang University) ;
  • Han, Yunsang (Graduate School of Advanced Imaging Science, Multimedia, and Film. Chung-Ang University) ;
  • Lee, Seok-Han (Graduate School of Advanced Imaging Science, Multimedia, and Film. Chung-Ang University) ;
  • Choi, Jong-Soo (Graduate School of Advanced Imaging Science, Multimedia, and Film. Chung-Ang University)
  • 투고 : 2013.11.22
  • 발행 : 2014.02.25

초록

현대의 지하 시설물들은 보행자의 보행에 방해되지 않도록 지하에 매설 되어 있기 때문에 가시적인 확인이 어렵다. 이러한 폐색 시설물들을 다루는 건설현장에서는 시각적으로 위치를 정확히 추정하기 어렵기 때문에 작업자의 경험 또는 종이 도면 등에 의존하다 보니 침수나 붕괴의 위험에 노출되는 등 많은 문제점이 발생한다. 본 논문에서는 일반적인 건설 현장에서 폐색된 지하 시설물을 모바일을 이용한 작업자 중심의 시각화 시스템을 제안한다. 논문의 구성은 크게 3단계로 이루어 진다. 먼저, "맨홀 검출 및 특징점 추출 단계"에서는 폐색된 건축물의 기준점인 폐색되지 않는 맨홀을 검출 및 추출한다. 다음으로, "특징점 추적 단계" 에서는 이전단계에서 추출한 특징점을 추적한다. 마지막으로, "폐색 건축물 시각화 단계" 에서는 맨홀에 따라 서로 다른 지하시설물이 존재함으로 이전 단계에서 검출 및 추적된 맨홀의 위치에 모바일에 내장된 GPS 데이터를 분석하여 현장에 해당하는 폐색된 건축물인 3차원 객체를 정합 한다. 제안된 방법은 실내 환경에서 맨홀 검출과 특징점 추출 및 추적방법들의 비교 분석을 통해 최적의 방법을 적용하였으며, 실제 환경에서의 폐색된 상/하수도 배관 증강을 통해 가능성을 확인하였다. 또한, 폐색된 상하수도 등의 건축물의 증강된 3차원 결과들로부터 작업자 중심의 보다 유용한 건설 환경을 제공할 수 있다.

Some infrastructure these days is usually constructed under the ground for it to not interfere the foot-traffic of pedestrians, and thus, it is difficult to visually confirm the accurate location of the site where the establishments must be buried. These technical difficulties increase the magnitude of the problems that could arise from over-reliance on the experience of the worker or a mere blueprint. Such problems include exposure to flood and collapse. This paper proposes a constructor-oriented visualization system via mobile gadgets in general construction sites with occluded structures. This proposal is consisted with three stages. First, "Stage of detecting manhole and extracting features" detects and extracts the basis point of occluded structures which is unoccluded manhole. Next, "Stage of tracking features" tracks down the extracted features in the previous stage. Lastly, "Stage of visualizing occluded constructions" analyzes and synthesizes the GPS data and 3D objects obtained from mobile gadgets in the previous stages. This proposal implemented ideal method through parallel analysis of manhole detection, feature extraction, and tracking techniques in indoor environment, and confirmed the possibility through occluded water-pipe augmentation in real environment. Also, it offers a practical constructor-oriented environment derived from the augmented 3D results of occluded water-pipings.

키워드

참고문헌

  1. S.H. Lee, S.K. Lee and J.S. Choi, "Real-time camera tracking using a particle filter and multiple feature trackers," Games Innovations Conference, 2009. ICE-GIC 2009. International IEEE Consumer Electronics Society's, pp.29-36, Aug. 2009.
  2. Peter Keitler, "Mobile Augmented Reality based 3D Snapshot," in Proc. IEEE and ACM International Symposiumon Mixedand Augmented Reality, pp. 199-200, 2009.
  3. R. Azuma, "A survey of Augmented Reality," Teleoperators and Virtual Environments, pp.355-385, vol. 6,no.4,Aug. 1997. https://doi.org/10.1162/pres.1997.6.4.355
  4. Radu Timofte, "Multi-view Manhole Detection, Recognition, and 3D Localisation," 2011 IEEE International Conference on Computer Vision Workshop (ICCV Workshops), pp.188 - 195, 6-3 Nov. 2011.
  5. Gerhard Schall , Erick Mendez , Ernst Kruijff , Eduardo Veas , Sebastian Junghanns , Bernhard Reitinger , Dieter Schmalstieg, "Handheld Augmented Reality for underground infrastructure visualization," Personal and Ubiquitous Computing, v.13 n.4, p.281-291, May 2009. https://doi.org/10.1007/s00779-008-0204-5
  6. Brodeschi, "Augmented Reality: an innovative alternative for the collaborative design on construction's projects," Proceedings of the IMProVe 2011 International conference on Innovative Methods in Product Design, p.114-120, June 2011.
  7. Thanh Phuong NGUYEN, Isabelle DEBLED-RENN ESSON, "Circularity measuring in linear time," 20th International Conference on Pattern Recognition (ICPR), pp. 2098-2101, 2010.
  8. E. Rosten and T. Drummond, "Machine learning for highspeed corner detection," In European Conference on Computer Vision, volume 1, 2006.
  9. J. Barron, N. Thacker, "Computing 2D and 3D Optical Flow," Tina-Vision, 2005.
  10. G. Bradski, A. Kaehler, "Learning Opencv: Computer Vision with the Opencv Library," O'REILLY, 2008.
  11. Z. Zhang, "Flexible New Technique for Camera Calibration," IEEE Trans. Pattern Analysis and Machine Intelligence, vol.19 no.7, pp.1330-1334, Nov. 2000.
  12. S.H.Lee, and J.S.Choi, "A Single Camera-based Estimation of Heights and Positions of Moving People," Journal of the Institute of Electronics Engineering of Korea, Vol.35, No.3, pp.20-31, Aug. 2008.
  13. R. Hartley and A. Zisserman, "Multiple View Geometry in Computer Vision," Cambridge Univ. Press, 2003.
  14. O. Faugeras, "Three-Dimensional Computer Vision," The MIT Press, 1993.
  15. D.W. Jung, M.G. Kim "History-tourism Information Service Base on Mobile Augumented Reality," Journal of Korea Spatial Information System Society, Vol. 20, No. 2, pp.59-70, Feb 2012.
  16. Nyatla. Nyartoolkit:artoolkit class library for java/c#/android, 2011. Available at http://nyatla.jp/nyartoolkit/.

피인용 문헌

  1. Development of monitoring solution for riverside groundwater facilities using an augmented reality vol.52, pp.4, 2016, https://doi.org/10.14770/jgsk.2016.52.4.501