DOI QR코드

DOI QR Code

Assessment in Habitat Stability of Halophyte by using Mesocosm Experiment

메조코즘 실험에 의한 염생식물의 서식안정성 평가

  • Ryu, Sung-Hoon (Departmet of Ocean Engineering, Pukyong National University) ;
  • Lee, In-Cheol (Departmet of Ocean Engineering, Pukyong National University) ;
  • Kim, Kyung-Hoi (Departmet of Ocean Engineering, Pukyong National University) ;
  • Yoon, Han-Sam (Department of Ecological Engineering, Pukyong National University)
  • Received : 2014.09.12
  • Accepted : 2014.12.26
  • Published : 2014.12.31

Abstract

In this paper, it was constructed the halophyte Mesocosm experimental which was used tidal flat and dredged sediment as a substrate material. Depending on the vegetation and substrate material of Mesocosm, Mesocosm A(tidal flat sediment + Salicornia herbacea), Mesocosm B (only dredged sediment), Mesocosm C(dredged sediment + Salicornia herbacea). Monitoring was carried out of Warter quality factots(Chemical Oxygen Demand(COD), Total Nitrogen(T-N), Total Phosphorus(T-P), water temperature, salinity), Sediment factors(Chemical Oxygen Demand(COD), Total Nitrogen(T-N), Total Phosphorus(T-P)) and growth of Salricornia herbacea. Habitat Stability Index of vegetation was calculating by using the monitoring results. HSI of Mesocosm C was calculated from 0.87 to 0.95 as compared to the relatively high HSI in Mesocosm A, it was evaluated to be able to be used in the restoration and construction of the coastal salt marsh with dredged sediment.

본 연구에서는 갯벌토 및 준설토를 기질로 이용한 Mesocosm 실험을 통하여 염생식물의 서식안정성을 평가하였다. Mesocosm 실험구는 기질 및 식생의 식재 여부에 따라 Mesocosm A(갯벌토+퉁퉁마디 식재), Mesocosm B(준설토), Mesocosm C(준설토+퉁퉁마디 식재)로 조성하였다. 그리고 Mesocosm 실험구 내 염생식물의 서식안정성을 평가하기 위해 수질(COD, T-N, T-P, 수온, 염분), 저질(COD, T-N, T-P), 식생성장률의 서식환경 인자에 대한 모니터링을 실시하여 서식안정성지수(HSI)를 산정하였다. Mesocosm C에서의 HSI는 0.87~0.95로서 Mesocosm A에 비하여 상대적으로 HSI가 높게 산정되어, 준설토를 이용한 해안염습지의 복원/조성에 이용될 수 있을 것으로 평가되었다.

Keywords

References

  1. Barbanti, A., V. U. Ceccherelli, F. Frascari, G. Reggiani and G. Rosso(1992), Nutrient regeneration processes in bottom sediments in a Podelta lagoon(Italy) and the role of bioturbation in determining the fluxes at the sediment-water interface, Hydrobiologia, Vol. 228, pp. 1-21. https://doi.org/10.1007/BF00006471
  2. Carpenter, S. R.(1996), Microcosm experiments have limited relevance for community and ecosystem ecology, Ecology, Vol. 77, pp. 677-680. https://doi.org/10.2307/2265490
  3. Chmura, G. L., D. R. Anisfeld and J. C. Lynch(2003), Global carbon sequestration in tidal saline wetland soils, Global Biogeochemical Cycles, Vol. 17, p. 1111.
  4. Ihm, B. S. and J. S. Lee(1998), Soil Factors Affecting the Plant Communities of Wetland on Southwestern Coast of Korea, The Korean Journal of Ecology, Vol. 21, No. 4, pp. 321-328.
  5. Kim, C. H.(2009), Studies on Vegetation for Ecological Restoration of Salt Marshes in Saemangeum Reclaimed Land-Germination Strategies and Character of Halophytes-, Jouranl of the Environmental Sciences, Vol. 18, No. 4, pp. 451-462. https://doi.org/10.5322/JES.2009.18.4.451
  6. Lee, C. B. and D. S. Kim(1990), Water chemistry of intertidal mudflat sediments: 1. Seasonal variability of nutrient profiles(S,N,P), Journal of Oceanol. Soc. Korea, Vol. 25, No. 1, pp. 8-20.
  7. Lee, I. C., B. H. Yi, S. Y. Park and C. R. Ryu(2008), Evaluation of Bio-Chemical Restoration Index at the Creation Site of Ecological Environmental Zone in Coastal Area, Jouranl of the Korean Society of Civil Engineers B, Vol. 28, No. 1B, pp. 161-168.
  8. Lee, I. C., S. Y. Park, S. H. Ryu and N. Kobayashi(2011), Ecological Resotoration Index for Evaluation of Artificial Salt Marsh, Journal of Coastal Research, Vol. 27, No. 5, pp. 959-965.
  9. Lee, M. J., K. J. Mun, G. L. Yoon, H. M. Eum and Y. T. Kim(2014), Mechnical and Germination Charateristics of Stabilized Dredged Soil, Journal of the Korean Geo-Environmental Society, Vol. 15, No. 3, pp. 33-40. https://doi.org/10.14481/jkges.2014.15.3.33
  10. Nichols, D. S.(1983), Capacity of natural wetlands to remove nutrients from wastewater, Journal of Water Pollution Control Federation, Vol. 55, No. 5, pp. 495-505.
  11. Philson, M. E. Q. and S. W. Nixon(1980), Marine microsom in Ecological Research Reprinted from microsm in ecological research edited by John P. Grey, Jr. published by US technical information center, US Department of energy, Symposium series 52 (CONF-781101), pp. 724-741.
  12. Poljakoff-Mayber, A. and J. Gale(1975), Plants in saline environments. Springer-Verlag. New York, Heidelberg, Berlin, p. 213.
  13. Ruth, B. F., D. A. Flemer and C. M. Bunrick(1994), Recolonization of estuarine sediments by macroinvertbrates: Does microsm size matter, Estuaries, Vol. 17, No. 3, pp. 606-613. https://doi.org/10.2307/1352408
  14. Schindler, D. W.(1998), Replication Versus realism: The need for ecosystem-scale experiments, Ecosystems, Vol. 1, pp. 323-334. https://doi.org/10.1007/s100219900026
  15. Teal, J. M. and L. Weishar(2005), Ecological engineering, adaptive management, and restoration management in Delaware Bay salt marsh restoration, Ecological engineering, Vol. 25, pp. 304-314. https://doi.org/10.1016/j.ecoleng.2005.04.009
  16. Yang, J. S and Y. H. Jeong(2011), Mesocosm as a Scientific Tool for Marine Science : Focused on the Soft-bottom Environment, Journal of the Korean Society for Marine Environmental Engineering, Vol. 14, No. 2, pp. 93-106. https://doi.org/10.7846/JKOSMEE.2011.14.2.093