• Title/Summary/Keyword: Tidal flat sediment

Search Result 201, Processing Time 0.033 seconds

Changes of Sedimentary Environments in the Southern Tidal Flat of Kanghwa Island (강화 남부 갯벌의 퇴적환경 변화)

  • Woo, Han-Jun;Je, Jong-Geel
    • Ocean and Polar Research
    • /
    • v.24 no.4
    • /
    • pp.331-343
    • /
    • 2002
  • The southern tidal flat of Kanghwa Island with an area of approximately $90km^2$ is one of the biggest flats on the west coast of Korea. Surface sediments for sedimentary analyses were sampled at 83 stations in August 1997, September 1999 and August 2000. The very poorly-sorted mud sediments were predominant in the eastern part of the tidal flat, whereas the poorly-sorted sand-mud mixed sediments were dominant in the western part. The area of muddy sediment distribution diminished, but that of sandy mud sediment extended to southeastward tidal flat for three years. In the western part of tidal flat, deposition occurred during the period of spring to summer, whereas erosion occurred in winter. Sediment accumulation rates during three years indicated that the sediments deposited continuously in the eastern part of tidal flat, whereas eroded in the western part of tidal flat. Recently, construction of artificial structures such as new airport, island-connecting bridges and dikes near the tidal flat might change tidal current and river flow pattern. In order to reduce the ecological damage and to preserve tidal-flat environment, it is necessary to Investigate long-term impacts on sedimentary environment and ecology.

The vertical environmental characteristics in the tidal flat sediments (갯벌의 수직적 환경 특성)

  • 김종구;유선재
    • Journal of Environmental Science International
    • /
    • v.9 no.2
    • /
    • pp.125-129
    • /
    • 2000
  • As one of the fundamental survey to evaluate purification capacity of pollutants at the tidal flat sediments, we studied vertical environmental characteristics in three tidal flat sediments, Chunjangdae, Eueunri and Gyewhado. These are dissmilar to external feature in each other. The results of this study may be summarized as followed; As the results of particle analysis, Eueunri tidal flat fediment located in Keum river estuary consists of 98.98% as silt & clay, Chunjangdae tidal flat sediment located in SeocheonGun consists of 97.99% as sand. And Gyewhado tidal flat sediment located in Saemankeum in Saemankeum area consists area consists of 32.81% as silt & clay and 67.19% as sand. The concentration of organic pollutants(I.L., COD, POC, PON) in Eueunri tidal flat sediment which highly content of silt & clay were 3~4 times higher than others. The concentration of organic pollutants at each layer were slightly increase goes with deepen layer. The linear correlation between I.L. and COD, POC, PON were obtained. Correlation coefficients were in range of 0.821~0.940. Also the correlation between pH and COD, POC, PON were high(>r=0.9). Filteration rate in Chunjangdae tidal flat sediment was 0.01584cm/s as mean value, but the other were almost nothing filtered off.

  • PDF

Classification of Sediment Types of Tidal Flat Area in the South of Kanghwa Island using Landsat Images (Landsat 위성영상을 이용한 강화도 남단 갯벌의 퇴적 유형 분류)

  • Park, Sungwoo;Jeong, Jongchul
    • Journal of Environmental Impact Assessment
    • /
    • v.11 no.4
    • /
    • pp.231-238
    • /
    • 2002
  • In this study we classified sediment types of tidal flat using Landsat-5 images. This is for groping the method which can analyze correctly various kinds of sediment faces through satellite images. This work was performed by referencing ground truth of sediment faces which was investigated in the field. With this data we classified Landsat-5 image of 1997's to grope a most suitable classification method. As a result, in case of south Kanghwa island area, it was the optimum way to compound band 4, 5, 7 of Landsat-5 TM imagery. And, this work classified 3 kinds of sediment faces - M(mud), sM(sandy mud) and (g)M(slightly gravelly mud) - in land and mixed water area. It is anticipated that if this method is applied to a image of extremely lower sea level time, it can classify the sediment types of a broad tidal flat area. This is expected to be a beginning of estimating the effect of sediment faces to the change of the tidal flat ecosystem.

Sedimentary Environments in the Hwangdo Tidal Flat, Cheonsu Bay (천수만 황도 갯벌의 퇴적환경)

  • Woo, Han Jun;Choi, Jae Ung;Ryu, Joo-Hyung;Choi, Song-Hwa;Kim, Seong-Ryul
    • Journal of Wetlands Research
    • /
    • v.7 no.2
    • /
    • pp.53-67
    • /
    • 2005
  • Cheonsu bay, which is typically a semi-closed type, is characterized by various environments such as channels, sand bars, small islands and tidal flats. The construction of Seosan A and B sea dikes from 1983 to 1985 might continuously change sedimentary environments in the northern part of the bay. In order to investigate sedimentary environment, surface and core sediments were sampled at the Hwangdo tidal flat and adjacent sea in June and October 2003. The surface sediments consisted of five sedimentary facies. Generally, the surface sediments in October were changed coarser on the tidal flat and little changed in the subtidal area compared to those in June 2003. Sedimentary facies analysis of three core sediments suggested that wave and tidal current were relatively strong in the tidal flat near Hwangdo, whereas the energy was relatively low in the tidal flat near channel. Sediment accumulation rates in the Hwangdo tidal flat during 11 months indicated that sediments deposited in the central part, whereas eroded in eastern and western sides of the tidal flat. These caused that sea dike changed tidal current patterns and sediment supplies.

  • PDF

The Sediment-Water Interface Increment due to the Complex Burrows of Macrofauna in a Tidal Flat

  • Koo, Bon-Joo;Kwon, Kae-Kyoung;Hyun, Jung-Ho
    • Ocean Science Journal
    • /
    • v.40 no.4
    • /
    • pp.221-227
    • /
    • 2005
  • The architecture of macrofaunal burrows and the total area of the sediment-water interface created by biogenic structure were investigated in the Donggeomdo tidal flat on the west coast of Korea. Resin casting methods were applied to recover burrows of four dominant species, Macrophthalmus japonicus, Cleistostoma dilatatum, Perinereis aibuhitensis, and Periserrula leucophryna, and whole burrows within the casting area at three sites in different tidal levels. P. leucophryna excavated the largest burrow in terms of a surface area among them. In the case of whole burrow casting, the space occupied by the biogenic structure was extended into deeper and expanded more greatly at the higher tidal level. In the uppermost flat, the burrow wall surface area within sediment was more extensive than the sediment surface area. Increased oxygen supply through the extended interface could enhance the degradation rates of organic carbon and also change the pathways of degradation. Quantifying the relationship between the extended interface and mineralization rate and pathway requires more extensive study.

Inference Models for Tidal Flat Elevation and Sediment Grain Size: A Preliminary Approach on Tidal Flat Macrobenthic Community

  • Yoo, Jae-Won;Hwang, In-Seo;Hong, Jae-Sang
    • Ocean Science Journal
    • /
    • v.42 no.2
    • /
    • pp.69-79
    • /
    • 2007
  • A vertical transect with 4 km length was established for the macrofaunal survey on the Chokchon macrotidal flat in Kyeonggi Bay, Incheon, Korea, 1994. Tidal elevation (m) and sediment mean grain size $(\phi)$ were inversely predicted by the transfer functions from the faunal assemblages. Three methods: weighted average using optimum value (WA), tolerance weighted version of the weighted average (WAT) and maximum likelihood calibration (MLC) were employed. Estimates of tidal elevation and mean grain size obtained by using the three different methods showed positively corresponding trends with the observations. The estimates of MLC were found to have the minimum value of sum of squares due to errors (SSE). When applied to the previous data $(1990\sim1992)$, each of three inference models exhibited high predictive power. This result implied there are visible relationships between species composition and faunas' critical environmental factors. Although a potential significance of the two major abiotic factors was re-affirmed, a weak tendency of biological interaction was detected from faunal distribution patterns across the flat. In comparison to the spatial and temporal patterns of the estimates, it was suggested that sediment characteristics were the primary factors regulating the distribution of macrofaunal assemblages, rather than tidal elevation, and the species composition may be sensitively determined by minute changes in substratum properties on a tidal flat.

Estimation of Decomposition Capacity for Organic Matter in Tidal Flat Sediments at Saemankeum Area (새만금지역 하구갯벌의 유기물 분해능력 평가)

  • Jong-Gu Kim;Sun-Jae You
    • Journal of Environmental Science International
    • /
    • v.10 no.5
    • /
    • pp.315-321
    • /
    • 2001
  • This study was conducted to estimate the decomposition capacity for organic matter by microbe of tidal flat sediments (Hajae, Dongjin and Mankyung). The decomposition rate constants (K') have been determined by Thomas slope method and compared with the values of each tidal flats. The decomposition rates of organic matter by microbe were initially very slow, but at the end of 12 hours, very sharply increased. The values of decomposition rate constant for Dongjin, Mankyung and Hajae tidal flat sediment were 1.364$day^{-1}$/, 1.080d$day^{-1}$ and 0.735$day^{-1}$, respectively. The decomposition rate constant of Dongjin tidal flat sediment which affected by livestock wastewater was higher than others. The decomposition quantity (mg/g/day) of organic matter by microbe of tidal flat sediments was 0.4mg/g/day for Dongjin, 0.36mg/g/day for Mankyung and 0.36mg/g/day for Hajae. The average of decomposition quantity was 0.37mg/g/day. To calculate purification capacity (kg/ha) of organic matter by microbe, we applied to two assumption ; 1) biological action by microbe is occur within 0.1cm under surface 2) specific gravity of sediment are 2.5g/$\textrm{cm}^2$. The purification capacity of organic matter by microbe of tidal flat sediment was calculated to 9.25kg/ha. The relationships between decomposition rate constant (K') and ignition loss (I. L), chemical oxygen demand by sediment (CO $D_{sed}$), total carbon(TC), silt and clay as index of organic matter were a high positive($R^2$=0.97~1.00).

  • PDF

Variation of Physical Characteristic of Tidal Flat's Environment by Water Level Change (수위변동에 따른 갯벌의 물리적 환경특성의 변화)

  • Park, Jong-Hwa
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.2 no.3
    • /
    • pp.1-9
    • /
    • 1999
  • This paper described the results of the characteristics of the near-bottom flow and field analysis of the tidal flats sediment. It was the aim of this paper to grasp current flow of tidal flat's environment and influence factor for environmental change forecast of tidal flats. Field measurement of water velocity, water elevation, bed materials test, and temperature distribution of tidal flat were conducted. Thereafter, current flow, turbidity and temperature distribution of tidal flat sediment have been discussed. The field research results showed that the fluctuating velocity near the seabed before and after its appearance at low tide was strongly affected by the wind wave. The resuspension of the sea-bottom sediment took place with great intensity before and after the appearance of the seabed at low tide. Both the sea water level and the weather condition were a significant influential factors. Such as, temperature and turbidity just on the surface and the shallow layer of seabed sediments were varied largely with time and weather conditions, but that its deeper layers was almost constant. Temperature on the seabed sediments was strongly influenced by irradiance and water depth. The temperature variation of the tidal flat and the variation characteristics of the current flow and turbidity depend greatly on the inhabiting environment of the tidal flat benthic organism.

  • PDF

Change in Community Structure of Shellfish in the Reclaimed Saemangeum Area (새만금 간척사업에 따른 갯벌 패류의 군집구조 변화)

  • HWANG Sun-Do;KIM Jong-Sheek
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.36 no.6
    • /
    • pp.708-715
    • /
    • 2003
  • Species composition and distribution patterns of shellfish were investigated in Eoeun and Geojeon tidal flat located in the Saemangeum area on the west coast of Korea from May to October 2000. Nineteen species of shellfish were collected in Geojeon tidal flat. The samples in number of individuals included Umbonium thomasi $(90.0\%)$ and Mactra veneriformis $(5.0\%).$ In Eoeun tidal flat, ten species of shellfish were collected and the dominant species in number of individuals were Potamocorbula amurensis $(55.0\%)$ and U. thomasi $(18.6\%).$ These results were compared with previous studies conducted before the beginning of reclamation in Saemangeum. Compared with the results from 1988, a change In species composition was observed. Laternula flexuosa and Nuttallia olivacea appeared, while Mactra chinensis and Coelomactra antiquata disappeared in the deposition area in Geojeon tidal flat. In the erosion area of Eoeun tidal flat, M. veneriformis and Meretrix lusoria appeared, while Cyclina sinensis disappeared. Based on a cluster analysis, the shellfish community in Eoeun tidal flat was classified into three station groups based on sediment types. Geojeon tidal flat was also classified into three station groups. The distribution of shellfish in the Saemangeum area was closely related to the sediment types.

Archaeal Diversity in Tidal Flat Sediment as Revealed by 16S rDNA Analysis

  • Kim Bong Soo;Oh Huyn Myung;Kan Ho Jeong;Chun Jong Sik
    • Journal of Microbiology
    • /
    • v.43 no.2
    • /
    • pp.144-151
    • /
    • 2005
  • During the past ten years, Archaea have been recognized as a widespread and significant component of marine picoplankton assemblages. More recently, the presence of novel archaeal phylogenetic lineages has been discovered in coastal marine environments, freshwater lakes, polar seas, and deep-sea hydrothermal vents. Therefore, we conducted an investigation into the archaeal community existing in tidal flat sediment collected from Ganghwa Island, Korea. Phylogenetic analysis of archaeal 16S rDNA amplified directly from tidal flat sediment DNA revealed the presence of two major lineages, belonging to the Crenarchaeota ($53.9\%$) and Euryarchaeota ($46.1\%$) phyla. A total of 102 clones were then sequenced and analyzed by comprehensive phylogenetic analysis. The sequences determined in our samples were found to be closely related to the sequences of clones which had been previously obtained from a variety of marine environments. Archaeal clones exhibited higher similarities ($83.25 - 100\%$) to sequences..from other environments in the public database than did those ($75.22 - 98.46\%$) of previously reported bacterial clones obtained from tidal flat sediment. The results of our study suggest that the archaeal community in tidal flat sediment is remarkably diverse.