DOI QR코드

DOI QR Code

Chemical and Physical Characteristics of Four Weed Seed Fibers (Hemistepta lyrata, Imperata cylindrica var. koenigii, Metaplexis japonica and Typha latifolia)

지칭개, 띠, 박주가리, 큰부들 잡초종자섬유의 물리화학적 특성

  • Yoon, A Ra (Research Center for Bio-based Chemistry, Division of Convergence Chemistry, Korea Research Institute of Chemical Technology) ;
  • Lee, Min Woo (Research Center for Bio-based Chemistry, Division of Convergence Chemistry, Korea Research Institute of Chemical Technology) ;
  • Kim, Seul Ki (Research Center for Bio-based Chemistry, Division of Convergence Chemistry, Korea Research Institute of Chemical Technology) ;
  • Kim, Jin-Seog (Research Center for Bio-based Chemistry, Division of Convergence Chemistry, Korea Research Institute of Chemical Technology)
  • 윤아라 (한국화학연구원 융합화학연구본부 바이오화학연구센터) ;
  • 이민우 (한국화학연구원 융합화학연구본부 바이오화학연구센터) ;
  • 김슬기 (한국화학연구원 융합화학연구본부 바이오화학연구센터) ;
  • 김진석 (한국화학연구원 융합화학연구본부 바이오화학연구센터)
  • Received : 2014.09.22
  • Accepted : 2014.10.06
  • Published : 2014.12.31

Abstract

In this study, we investigated several chemical and physical characteristics of 4 weed seed fibers; Hemistepta lyrata (HEMLY), Imperata cylindrica var. koenigii (IMPCK), Metaplexis japonica (METJA) and Typha latifolia (TYPLA). In chemical composition, there were 74 (TYPLA)-88.5% (METJA) of holocellulose, 17 (IMPCK)-24% (METJA) of lignin, 0.22 (METJA)-4.2% (IMPCK) of ash, 2.2 (HEMLY)-7.8% (IMPCK) of hot water extractives and 0.4 (IMPCK)-6.3% (TYPLA) of solvent extractives. Alpha-cellulose proportion to holocellulose was similar among weed seed fibers as 45-48%. The crystallinity index (CI) of raw seed fibers was 53.2 (TYPLA)-65.9% (HEMLY). However, CI of the chemical treated fibers (EDA fibers) was a little increased and showed 61.1 (IMPCK)-71.8% (METJA). The maximum thermal decomposition temperature (MTDT) of the raw seed fibers were 312, 321.8, 331.5 and $341.6^{\circ}C$ in METJA, TYPLA, HEMLY and IMPCK, respectively. But the MTDT of the EDA fibers were 327, 327, 341.7 and $360.0^{\circ}C$ in HEMLY, TYPLA, METJA and IMPCK, respectively. Taken together, they showed a similar or better characteristics compared to the reported or commercial natural fiber resourses. Accordingly, they seem to be practically applicable as renewable resources for a new natural fibers.

본 연구는 지칭개, 박주가리, 큰부들, 띠 종자섬유에 대한 간단한 화학적, 물리적 특성을 파악하고 이의 활용가능성 여부를 알아보기 위해 수행되었다. Holocellulose 함량은 건조중의 74-88.5%로서 박주가리 종자섬유가 가장 높았고 전체적으로 큰부들 줄기의 것(59.5%)보다 높은 경향이었다. 그러나 holocellulose에 대한 alpha-cellulose의 비율은 45-48%로서 종자섬유간 서로 비슷하였다. 리그닌 함량은 17.0% (띠)-24.0% (박주가리), 회분은 0.22% (박주가리)-4.2%(띠), 열수추출물은 2.2% (지칭개)-7.8% (띠), 유기용매 추출물은 0.4% (띠)-6.3% (부들) 함량을 나타내었다. Crystallinity index (CI) 분석에 있어서는 무처리 종자섬유의 경우 지칭개와 박주가리가 약 65%로서 높았고, 띠와 큰부들은 약 54%로서 상대적으로 낮았다. 그러나 화학처리후 얻어진 EDA 섬유간의 CI는 박주가리가 71.8%로서 가장 높았고 미소한 차이이지만 큰부들과 지칭개는 보다 낮아 각각 69.3%, 67.2%를 나타내었다. 한편 열분해 특성은 전형적인 lignocellulose계 패턴을 보였는데 무처리 종자섬유의 경우, 가장 높은 분해율을 나타낸 온도는($%/^{\circ}C$) 박주가리, 큰부들, 지칭개, 띠에서 각각, $312^{\circ}C$, $321.8^{\circ}C$, $331.5^{\circ}C$, $341.6^{\circ}C$로서 박주가리가 가장 낮고, 띠에서 가장 높은 편이었다. 그런데 EDA 섬유의 경우는, 지칭개, 큰부들, 박주가리, 띠에서 각각 $327^{\circ}C$, $327^{\circ}C$, $341.1^{\circ}C$, $360.0^{\circ}C$로서 띠가 가장 높은 편이었다. 이상의 결과들은 종합해 볼 때, 본실험의 종자섬유는 그 자체로 직접 이용할 수 있을 정도의 화학적, 물리적 특징을 가졌으나 일련의 화학처리를 하면 보다 우수한 품질의 섬유를 확보할 수 있으며, 이들은 여러 용도의 천연섬유 자원으로 유용하게 활용될 수 있을 것으로 판단되었다.

Keywords

References

  1. Anuar, H. and Zuraida, A. 2011. Improvement in mechanical properties of reinforced thermoplastic elastomer composite with bast fibre. Compos. Part B 42:462-465.
  2. Bodirlau, R., Teaca, C.-A. and Spiridon, I. 2014. Green composites comprising thermoplastic corn starch and various cellulose-based fillers. BioRes. 9(1):39-53.
  3. Chen, G. 2011. Seed and seed fibers in fruit of Metaplexis japonica used in health-care fabrics or quilt fabrics. Patent No. Peop. Rep. China. CN102286797A.
  4. Elenga, R.G., Dirras, G.F., Goma Maniongui, J., Djemia, P. and Biget, M.P. 2009. On the microstructure and physical properties of untreated raffia textiles fiber. Compos. Part A 40:418-422. https://doi.org/10.1016/j.compositesa.2009.01.001
  5. Faruk, O., Bledzki, A.K., Fink, H.P. and Sain, M. 2012. Biocomposites reinforced with natural fibers: 2000-2010. Prog. Polym. Sci. 37:1552-1596. https://doi.org/10.1016/j.progpolymsci.2012.04.003
  6. Fiore, V., Valenza, A. and Di Bella, G. 2011. Artichoke (Cynara cardunculus L.) fibres as potential reinforcement of composite structures. Compos. Sci. Technol. 71:1138-1144. https://doi.org/10.1016/j.compscitech.2011.04.003
  7. Fiore, V., Scalici, T. and Valenza, A. 2014. Characterization of a new natural fiber from Arundo donax L. as potential reinforcement of polymer composites. Carbohydr. Polym. 106:77-83. https://doi.org/10.1016/j.carbpol.2014.02.016
  8. Fiserova, M., Gigac, J., Majtnerova, A. and Szeiffova, G. 2006. Evaluation of annual plants (Amaranthus caudatus L., Atriplex hortensis L., Helianthus tuberosus L.) for pulp production. Cellul. Chem. Technol. 40(6):405-412.
  9. Guimaraes, J.L., Frollini, E., da Silva, C.G., Wypych, F. and Satyanarayana, K.G. 2009. Characterization of banana, sugarcane bagasse and sponge gourd fibers of Brazil. Ind. Crops Prod. 30:407-415. https://doi.org/10.1016/j.indcrop.2009.07.013
  10. Helbert, W., Cavaille, J.Y. and Dufresne, A. 1996. Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. J. Polym. Compos. 17:604-611. https://doi.org/10.1002/pc.10650
  11. Indran, S., Raj, R.E. and Sreenivasan, V.S. 2014. Characterization of new natural cellulosic fiber from Cissus quadrangularis root. Carbohydr. Polym. 110:423-429. https://doi.org/10.1016/j.carbpol.2014.04.051
  12. Jimenez, L., Angulo, V., Ramos, E., De la Torre, M.J. and Ferrer, J.L. 2006. Comparison of various pulping processes for producing pulp from vine shoots. Ind. Crops. Prod. 23:122-130. https://doi.org/10.1016/j.indcrop.2005.05.001
  13. Kabir, M.M., Wang, H., Lau, K.T. and Cardona, F. 2012. Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview. Compos. Part B 43:2883-2892. https://doi.org/10.1016/j.compositesb.2012.04.053
  14. Keijsers, E.R.P., Yilmaz, G. and van Dam, J. E.G. 2013. The cellulose resource matrix. Carbohydr. Polym. 93:9-21. https://doi.org/10.1016/j.carbpol.2012.08.110
  15. Khristova, P. and Tissot, M. 1995. Soda-anthraquinone pulping of Hibiscus sabdariffa (karkadeh) and Calotropis procera from Sudan. Bioresour. Technol. 53(1):67-72. https://doi.org/10.1016/0960-8524(95)00067-O
  16. Khiari, R., Mhenni, M.F., Belgacem, M.N. and Mauret, E. 2010. Chemical composition and pulping of date palm rachis and Posidonia oceanica-A comparison with other wood and nonwood fibre sources. Bioresour. Technol. 101:775-780. https://doi.org/10.1016/j.biortech.2009.08.079
  17. Kim, D.S. and Park, S.H. 2009. Weeds of Korea-Morphology, physiology, ecology. Rijeon Agricutural Resources Publications, Seoul, Korea. (In Korean)
  18. Kim, W.J., Lee, S.E. and Seo, Y.B. 2010. Sugar extraction by pretreatment and soda pulping from cattail (Typhaceae) (2) Pulping characteristics. J. Korea TAPPI 42(3):14-21. (In Korean)
  19. Klemm, D., Kramer, F., Moritz, S., Lindstrom, T., Ankerfors, M., Gray, D., Dorris, A., et al. 2011. Nanocelluloses: A new family of nature-based materials. Angew. Chem. Int. Ed. 50:5438-5466. https://doi.org/10.1002/anie.201001273
  20. Lavoie, M.C. 2012. Renewable oil absorbent and method thereof. US 20120111797 A.
  21. Maity, S., Mohapatra, H.S. and Chatterjee, A. 2014. New generation natural fiber-akund floss. Melliand Int. 20(1):22-24.
  22. Manikandan, V., Velmurugan, R., Ponnambalam, S.G. and Thomas, S. 2004. Mechanical properties of short and unidirectional aligned Palmyra fiber reinforced polyester composite. Int. J. Plast. Technol. 8:205-216.
  23. Mohanty, A.K., Misra, M. and Hinrichsen, G. 2000. Biobibers, biodegradable polymers and biocomposites: An overview. Macrom. Mater. Eng. 266/277:1-24.
  24. Morais, J.P.S., Rosa, M.F., Filho, M.M.S., Nascimento, L.D., Nascimento, D.M., Cassales, A.R., et al. 2013. Extraction and characterization of nanocellulose structures from raw cotton linter. Carbohydr. Polym. 91:220-235.
  25. Mwaikambo, L.Y. and Ansell, M.P. 2002. Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. J. Appl. Polym. Sci. 84:2222-2234. https://doi.org/10.1002/app.10460
  26. Pandey, J. K., Ahn, S. H., Lee, C. S., Mohanty, A.K. and Misra, M. 2010. Recent advances in the application of natural fiber based composites. Macrom. Mater. and Eng. 295:975-989. https://doi.org/10.1002/mame.201000095
  27. Reddy, M.M., Vivekanandhan, S., Misra, M., Bhatia, S.K. and Mohanty, A.K. 2013. Biobased plastics and bionanocomposites: Current status and future opportunities. Prog. Polym. Sci. 38:1653-1689. https://doi.org/10.1016/j.progpolymsci.2013.05.006
  28. Reddy, N. and Yang, Y. 2005. Structure and properties of high quality natural cellulose fibers from corn stalks. Polym. 46(15):5494-500. https://doi.org/10.1016/j.polymer.2005.04.073
  29. Saravanakumar, S.S., Kumaravel, A., Nagarajan, T., Sudhakar, P. and Baskaran, R. 2013. Characterization of a novel natural cellulosic fiber from Prosopis juliflora bark. Carbohydr. Polym. 92:1928-1933. https://doi.org/10.1016/j.carbpol.2012.11.064
  30. Segal, L., Creely, J.J., Martin, A.E.J. and Conrad, C.M. 1959. An empirical method for estimating the degree of crystallinity of native cellulose using X-ray diffractometer. Text. Res. J. 29:786-794. https://doi.org/10.1177/004051755902901003
  31. Siddhanta, A.K., Chhatbar, M.U., Mehta, G.K., Sanandiya, N.D., Kumar, S., et al. 2011. The cellulose contents of Indian seaweeds. J. Appl. Phycol. 23:919-923. https://doi.org/10.1007/s10811-010-9599-2
  32. Siqueira, G., Bras, J. and Dufresne, A. 2010. Cellulosic bionanocomposites: A review of preparation, properties and applications. Polym. 2:728-765. https://doi.org/10.3390/polym2040728
  33. Sreenivasan, V.S., Somasundaram, S., Ravindran, D., Manikandan, V. and Narayanasamy, R. 2011. Microstructural, physicochemical and mechanical characterization of Sansevieria cylindrica fibres-An exploratory investigation. Mater. Des. 32:453-461. https://doi.org/10.1016/j.matdes.2010.06.004
  34. Subramanian, K., Kumar, P.S., Jeyapal, P. and Venkatesh, N. 2005. Characterization of lingo-cellulosic seed fibre from Wrightia tinctoria plant for textile applications-An exploratory investigation. Eur. Polymer J. 41(4):853-861. https://doi.org/10.1016/j.eurpolymj.2004.10.037
  35. Thakur, V.K. and Thakur, M.K. 2014. Processing and characterization of natural cellulose fibers / thermoset polymer composites. Carbohydr. Polym. 109:102-117. https://doi.org/10.1016/j.carbpol.2014.03.039
  36. Vinson, K.D. and Franklin, T.J. 2010. Individualized seed hairs and products employing same. US 7691472 B2.
  37. Wise, L.E., Murphy, M. and D'Addieco, A. 1946. Chlorite holocellulose, its fractionation and bearing on summative wood analysis and studies on the hemicelluloses. Paper Trade J. 122(2):35-43.
  38. Yao, F., Wu, Q., Lei, Y., Guo, W. and Xu, Y. 2008. Thermal decomposition kinetics of natural fibers: Activation energy with dynamic thermogravimetric analysis. Polym. Degrad. Stab. 93:90-98. https://doi.org/10.1016/j.polymdegradstab.2007.10.012
  39. Yun, A.R., Lee, M.W., Kim, S.K. and Kim, J.S. 2014. Morphological characteristics of weed seed fibers. Weed Turf. Sci. 3(3):196-205. (In Korean) https://doi.org/10.5660/WTS.2014.3.3.196