Browse > Article
http://dx.doi.org/10.5660/WTS.2014.3.4.253

Chemical and Physical Characteristics of Four Weed Seed Fibers (Hemistepta lyrata, Imperata cylindrica var. koenigii, Metaplexis japonica and Typha latifolia)  

Yoon, A Ra (Research Center for Bio-based Chemistry, Division of Convergence Chemistry, Korea Research Institute of Chemical Technology)
Lee, Min Woo (Research Center for Bio-based Chemistry, Division of Convergence Chemistry, Korea Research Institute of Chemical Technology)
Kim, Seul Ki (Research Center for Bio-based Chemistry, Division of Convergence Chemistry, Korea Research Institute of Chemical Technology)
Kim, Jin-Seog (Research Center for Bio-based Chemistry, Division of Convergence Chemistry, Korea Research Institute of Chemical Technology)
Publication Information
Weed & Turfgrass Science / v.3, no.4, 2014 , pp. 253-261 More about this Journal
Abstract
In this study, we investigated several chemical and physical characteristics of 4 weed seed fibers; Hemistepta lyrata (HEMLY), Imperata cylindrica var. koenigii (IMPCK), Metaplexis japonica (METJA) and Typha latifolia (TYPLA). In chemical composition, there were 74 (TYPLA)-88.5% (METJA) of holocellulose, 17 (IMPCK)-24% (METJA) of lignin, 0.22 (METJA)-4.2% (IMPCK) of ash, 2.2 (HEMLY)-7.8% (IMPCK) of hot water extractives and 0.4 (IMPCK)-6.3% (TYPLA) of solvent extractives. Alpha-cellulose proportion to holocellulose was similar among weed seed fibers as 45-48%. The crystallinity index (CI) of raw seed fibers was 53.2 (TYPLA)-65.9% (HEMLY). However, CI of the chemical treated fibers (EDA fibers) was a little increased and showed 61.1 (IMPCK)-71.8% (METJA). The maximum thermal decomposition temperature (MTDT) of the raw seed fibers were 312, 321.8, 331.5 and $341.6^{\circ}C$ in METJA, TYPLA, HEMLY and IMPCK, respectively. But the MTDT of the EDA fibers were 327, 327, 341.7 and $360.0^{\circ}C$ in HEMLY, TYPLA, METJA and IMPCK, respectively. Taken together, they showed a similar or better characteristics compared to the reported or commercial natural fiber resourses. Accordingly, they seem to be practically applicable as renewable resources for a new natural fibers.
Keywords
Chemical composition of weed seed fibers; Hemistepta lyrata; Imperata cylindrica var. koenigii; Metaplexis japonica; Typha latifolia;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Anuar, H. and Zuraida, A. 2011. Improvement in mechanical properties of reinforced thermoplastic elastomer composite with bast fibre. Compos. Part B 42:462-465.
2 Bodirlau, R., Teaca, C.-A. and Spiridon, I. 2014. Green composites comprising thermoplastic corn starch and various cellulose-based fillers. BioRes. 9(1):39-53.
3 Chen, G. 2011. Seed and seed fibers in fruit of Metaplexis japonica used in health-care fabrics or quilt fabrics. Patent No. Peop. Rep. China. CN102286797A.
4 Elenga, R.G., Dirras, G.F., Goma Maniongui, J., Djemia, P. and Biget, M.P. 2009. On the microstructure and physical properties of untreated raffia textiles fiber. Compos. Part A 40:418-422.   DOI
5 Fiserova, M., Gigac, J., Majtnerova, A. and Szeiffova, G. 2006. Evaluation of annual plants (Amaranthus caudatus L., Atriplex hortensis L., Helianthus tuberosus L.) for pulp production. Cellul. Chem. Technol. 40(6):405-412.
6 Faruk, O., Bledzki, A.K., Fink, H.P. and Sain, M. 2012. Biocomposites reinforced with natural fibers: 2000-2010. Prog. Polym. Sci. 37:1552-1596.   DOI   ScienceOn
7 Fiore, V., Valenza, A. and Di Bella, G. 2011. Artichoke (Cynara cardunculus L.) fibres as potential reinforcement of composite structures. Compos. Sci. Technol. 71:1138-1144.   DOI
8 Fiore, V., Scalici, T. and Valenza, A. 2014. Characterization of a new natural fiber from Arundo donax L. as potential reinforcement of polymer composites. Carbohydr. Polym. 106:77-83.   DOI
9 Guimaraes, J.L., Frollini, E., da Silva, C.G., Wypych, F. and Satyanarayana, K.G. 2009. Characterization of banana, sugarcane bagasse and sponge gourd fibers of Brazil. Ind. Crops Prod. 30:407-415.   DOI
10 Helbert, W., Cavaille, J.Y. and Dufresne, A. 1996. Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. J. Polym. Compos. 17:604-611.   DOI   ScienceOn
11 Indran, S., Raj, R.E. and Sreenivasan, V.S. 2014. Characterization of new natural cellulosic fiber from Cissus quadrangularis root. Carbohydr. Polym. 110:423-429.   DOI
12 Jimenez, L., Angulo, V., Ramos, E., De la Torre, M.J. and Ferrer, J.L. 2006. Comparison of various pulping processes for producing pulp from vine shoots. Ind. Crops. Prod. 23:122-130.   DOI
13 Khristova, P. and Tissot, M. 1995. Soda-anthraquinone pulping of Hibiscus sabdariffa (karkadeh) and Calotropis procera from Sudan. Bioresour. Technol. 53(1):67-72.   DOI
14 Kabir, M.M., Wang, H., Lau, K.T. and Cardona, F. 2012. Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview. Compos. Part B 43:2883-2892.   DOI
15 Keijsers, E.R.P., Yilmaz, G. and van Dam, J. E.G. 2013. The cellulose resource matrix. Carbohydr. Polym. 93:9-21.   DOI
16 Kim, W.J., Lee, S.E. and Seo, Y.B. 2010. Sugar extraction by pretreatment and soda pulping from cattail (Typhaceae) (2) Pulping characteristics. J. Korea TAPPI 42(3):14-21. (In Korean)   과학기술학회마을
17 Khiari, R., Mhenni, M.F., Belgacem, M.N. and Mauret, E. 2010. Chemical composition and pulping of date palm rachis and Posidonia oceanica-A comparison with other wood and nonwood fibre sources. Bioresour. Technol. 101:775-780.   DOI   ScienceOn
18 Kim, D.S. and Park, S.H. 2009. Weeds of Korea-Morphology, physiology, ecology. Rijeon Agricutural Resources Publications, Seoul, Korea. (In Korean)
19 Klemm, D., Kramer, F., Moritz, S., Lindstrom, T., Ankerfors, M., Gray, D., Dorris, A., et al. 2011. Nanocelluloses: A new family of nature-based materials. Angew. Chem. Int. Ed. 50:5438-5466.   DOI   ScienceOn
20 Maity, S., Mohapatra, H.S. and Chatterjee, A. 2014. New generation natural fiber-akund floss. Melliand Int. 20(1):22-24.
21 Manikandan, V., Velmurugan, R., Ponnambalam, S.G. and Thomas, S. 2004. Mechanical properties of short and unidirectional aligned Palmyra fiber reinforced polyester composite. Int. J. Plast. Technol. 8:205-216.
22 Saravanakumar, S.S., Kumaravel, A., Nagarajan, T., Sudhakar, P. and Baskaran, R. 2013. Characterization of a novel natural cellulosic fiber from Prosopis juliflora bark. Carbohydr. Polym. 92:1928-1933.   DOI
23 Mohanty, A.K., Misra, M. and Hinrichsen, G. 2000. Biobibers, biodegradable polymers and biocomposites: An overview. Macrom. Mater. Eng. 266/277:1-24.
24 Morais, J.P.S., Rosa, M.F., Filho, M.M.S., Nascimento, L.D., Nascimento, D.M., Cassales, A.R., et al. 2013. Extraction and characterization of nanocellulose structures from raw cotton linter. Carbohydr. Polym. 91:220-235.
25 Mwaikambo, L.Y. and Ansell, M.P. 2002. Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. J. Appl. Polym. Sci. 84:2222-2234.   DOI   ScienceOn
26 Pandey, J. K., Ahn, S. H., Lee, C. S., Mohanty, A.K. and Misra, M. 2010. Recent advances in the application of natural fiber based composites. Macrom. Mater. and Eng. 295:975-989.   DOI   ScienceOn
27 Reddy, M.M., Vivekanandhan, S., Misra, M., Bhatia, S.K. and Mohanty, A.K. 2013. Biobased plastics and bionanocomposites: Current status and future opportunities. Prog. Polym. Sci. 38:1653-1689.   DOI   ScienceOn
28 Reddy, N. and Yang, Y. 2005. Structure and properties of high quality natural cellulose fibers from corn stalks. Polym. 46(15):5494-500.   DOI   ScienceOn
29 Segal, L., Creely, J.J., Martin, A.E.J. and Conrad, C.M. 1959. An empirical method for estimating the degree of crystallinity of native cellulose using X-ray diffractometer. Text. Res. J. 29:786-794.   DOI
30 Siddhanta, A.K., Chhatbar, M.U., Mehta, G.K., Sanandiya, N.D., Kumar, S., et al. 2011. The cellulose contents of Indian seaweeds. J. Appl. Phycol. 23:919-923.   DOI
31 Thakur, V.K. and Thakur, M.K. 2014. Processing and characterization of natural cellulose fibers / thermoset polymer composites. Carbohydr. Polym. 109:102-117.   DOI
32 Siqueira, G., Bras, J. and Dufresne, A. 2010. Cellulosic bionanocomposites: A review of preparation, properties and applications. Polym. 2:728-765.   DOI
33 Sreenivasan, V.S., Somasundaram, S., Ravindran, D., Manikandan, V. and Narayanasamy, R. 2011. Microstructural, physicochemical and mechanical characterization of Sansevieria cylindrica fibres-An exploratory investigation. Mater. Des. 32:453-461.   DOI
34 Subramanian, K., Kumar, P.S., Jeyapal, P. and Venkatesh, N. 2005. Characterization of lingo-cellulosic seed fibre from Wrightia tinctoria plant for textile applications-An exploratory investigation. Eur. Polymer J. 41(4):853-861.   DOI   ScienceOn
35 Yun, A.R., Lee, M.W., Kim, S.K. and Kim, J.S. 2014. Morphological characteristics of weed seed fibers. Weed Turf. Sci. 3(3):196-205. (In Korean)   과학기술학회마을   DOI
36 Vinson, K.D. and Franklin, T.J. 2010. Individualized seed hairs and products employing same. US 7691472 B2.
37 Wise, L.E., Murphy, M. and D'Addieco, A. 1946. Chlorite holocellulose, its fractionation and bearing on summative wood analysis and studies on the hemicelluloses. Paper Trade J. 122(2):35-43.
38 Yao, F., Wu, Q., Lei, Y., Guo, W. and Xu, Y. 2008. Thermal decomposition kinetics of natural fibers: Activation energy with dynamic thermogravimetric analysis. Polym. Degrad. Stab. 93:90-98.   DOI   ScienceOn
39 Lavoie, M.C. 2012. Renewable oil absorbent and method thereof. US 20120111797 A.