DOI QR코드

DOI QR Code

Atomistic simulation of surface passivated wurtzite nanowires: electronic bandstructure and optical emission

  • Chimalgi, Vinay U. (Department of Electrical and Computer Engineering, Southern Illinois University at Carbondale) ;
  • Nishat, Md Rezaul Karim (Department of Electrical and Computer Engineering, Southern Illinois University at Carbondale) ;
  • Yalavarthi, Krishna K. (Department of Electrical and Computer Engineering, Southern Illinois University at Carbondale) ;
  • Ahmed, Shaikh S. (Department of Electrical and Computer Engineering, Southern Illinois University at Carbondale)
  • Received : 2014.07.31
  • Accepted : 2014.12.24
  • Published : 2014.09.25

Abstract

The three-dimensional Nano-Electronic Modeling toolkit (NEMO 3-D) is an open source software package that allows the atomistic calculation of single-particle electronic states and optical response of various semiconductor structures including bulk materials, quantum dots, impurities, quantum wires, quantum wells and nanocrystals containing millions of atoms. This paper, first, describes a software module introduced in the NEMO 3-D toolkit for the calculation of electronic bandstructure and interband optical transitions in nanowires having wurtzite crystal symmetry. The energetics (Hamiltonian) of the quantum system under study is described via the tight-binding (TB) formalism (including $sp^3$, $sp^3s^*$ and $sp^3d^5s^*$ models as appropriate). Emphasis has been given in the treatment of surface atoms that, if left unpassivated, can lead to the creation of energy states within the bandgap of the sample. Furthermore, the developed software has been validated via the calculation of: a) modulation of the energy bandgap and the effective masses in [0001] oriented wurtzite nanowires as compared to the experimentally reported values in bulk structures, and b) the localization of wavefunctions and the optical anisotropy in GaN/AlN disk-in-wire nanowires.

Keywords

References

  1. Ahmed, S., Islam, S. and Mohammed, S. (2010), "Electronic structure of InN/GaN quantum dots: Multimillion atom tight-binding simulations", IEEE Tran. Elect. Dev., 57(1), 164-173. https://doi.org/10.1109/TED.2009.2035531
  2. Ahmed, S., Yalavarthi, K., Gaddipati, V., Muntahi, A., Sundaresan, S., Mohammed, S., Islam, S., Hindupur, R., John, D. and Ogden, J. (2011), "Quantum atomistic simulations of nanoelectronic devices using QuADS", Nano-Electronic Devices: Semiclassical and Quantum Transport Modeling, Springer, Eds. D. Vasileska and S. M. Goodnick, 405-441
  3. Ahmed, S., Kharche, N., Rahman, R., Usman, M., Lee, S., Ryu, H., Bae, H., Clark, S., Haley, B., Naumov, M., Saied, F., Korkusinski, M., Kennel, R., Mclennan, M., Boykin, T.B. and Klimeck, G. (2009), "Multimillion atom simulations with NEMO 3-D", Meyers, Ed. Robert, Encyclopedia of Complexity and Systems Science, 6, Springer, New York.
  4. Ahmed, S., Usman, M., Heitzinger, C., Rahman, R., Schliwa, A. and Klimeck, G. (2007), "Atomistic simulation of non-degeneracy and optical polarization anisotropy in zincblende quantum dots", Technical proceedings of the 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Bangkok, January.
  5. Bardoux, R., Guillet, T., Gil, B., Lefebvre, P., Bretagnon, T., Taliercio, T., Rousset, S. and Semond, F. (2008), "Polarized emission from GaN/AlN quantum dots: Single-dot spectroscopy and symmetry-based theory", Phys. Rev. B, 77, 235315. https://doi.org/10.1103/PhysRevB.77.235315
  6. Haley, B.P., Lee, S., Luisier, M., Ryu, H., Saied, F., Clark, S., Bae, H. and Klimeck, G. (2009), "Advancing nanoelectronic device modeling through peta-scale computing and deployment on nanoHUB", J. Phys. Conf. Ser., 180, 012075. https://doi.org/10.1088/1742-6596/180/1/012075
  7. Hosoya, H., Kido, F. and Tokita, S. (1998), "A new view of hybridized atomic orbitals from n-dimensional world", Croat. Chem. Acta, 23(1-2), 169178.
  8. Huang, C.T. , Song, J., Tsai, C.M., Lee, W.F., Lien, D.H., Gao, Z., Hao, Y., Chen, L.J. and Wang, Z.L. (2010), "Single-InN-nanowire nanogenerator with Up to 1 V output voltage", Adv. Mater., 22, 4008-4013. https://doi.org/10.1002/adma.201000981
  9. Jancu, J.M., Bassani, F., Della Sala, F. and Scholz, R. (2002), "Transferable tight-binding parametrization for the group-III nitrides", Appl. Phys. Lett., 81, 4838. https://doi.org/10.1063/1.1529312
  10. Klimeck, G., Oyafuso, F., Boykin, T., Bowen, R. and Allmen, P. von. (2002), "Development of a nanoelectronic 3-D (NEMO 3-D) simulator for multimillion atom simulations and its application to alloyed quantum dots", Comput. Model. Eng. Sci., 3, 601.
  11. Klimeck, G., Ahmed, S., Bae, H., Kharche, N., Rahman, R., Clark, S., Haley, B., Lee, S., Naumov, M., Ryu, H., Saied, F., Prada, M., Korkusinski, M. and Boykin, T. B. (2007), "Atomistic simulation of realisticallysized nanodevices using NEMO 3-D-Part I: Models and Benchmarks", IEEE Tran. Elect. Dev., 54, 2079-2089.
  12. Klimeck, G., Ahmed, S., Kharche, N., Korkusinski, M., Usman, M., Prada, M. and Boykin, T.B. (2007), "Atomistic simulation of realistically-sized nanodevices using NEMO 3-D-Part II: Applications", IEEE Tran. Elect. Dev., 54, 2090-2099. https://doi.org/10.1109/TED.2007.904877
  13. Keating, P. (1966), "Effect of invariance requirements on the elastic strain energy of crystals with application to the diamond structure", Phys. Rev., 145.
  14. Li, X., Wang, X., Bondokov, R., Morris, J., An, Y.H. and Sudarshan, T.S. (2005), "Micro/nanoscale mechanical and tribological characterization of SiC for orthopedic applications", J. Biomed. Mater. Res. Part B: Appl. Biomater., 72(B), 353-361.
  15. Lin, Y.F., Song, J.H., Ding, Y., Liu, S.Y. and Wang, Z.L. (2008), "Piezoelectric nanogenerator using CdS nanowires", Appl. Phys. Lett., 92, 022105. https://doi.org/10.1063/1.2831901
  16. Lowdin, P.O. (1950), "On the non-orthogonality problem connected with the use of atomic wave functions in the theory of molecules and crystals", J. Chem. Phys., 18, 365-375. https://doi.org/10.1063/1.1747632
  17. Lu, M.Y., Song, J.H., Lu, M.P., Lee, C.Y., Chen, L.J. and Wang, Z.L. (2009), "ZnO-ZnS hererojunction and ZnS nanowire arrays for electricity generation", ACS Nano., 3(2), 357-362. https://doi.org/10.1021/nn800804r
  18. Ma, R.M., Dai, L., Huo, H.B., Xu, W.J. and Qin, G.G. (2007), "High-performance logic circuits constructed on single CdS nanowires", Nano Lett., 7(11), 3300-3304. https://doi.org/10.1021/nl0715286
  19. Merrill, K., Yalavarthi K. and Ahmed, S. (2012), "Giant growth-plane optical anisotropy in c-plane wurtzite GaN/InN/GaN dot-in-nanowires", Superlat. Microstr., 52(5), 949-961. https://doi.org/10.1016/j.spmi.2012.08.001
  20. Nakamura, H.S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H., Sugimoto, Y., Kozaki, T., Umemoto, H., Sano, M. and Chocho, K. (1998), "Continuous-wave operation of InGaN/GaN/AlGaN-based laser diodes grown on GaN substrates", Appl. Phys. Lett., 72.
  21. Neophytou, N. (2008), "Quantum and atomistic effects in nanoelectronic transport devices", Ph.D. Dissertation, Purdue University, Purdue.
  22. Ponce, F. and Bour, D. (1997), "Nitride-based semiconductors for blue and green light-emitting devices", Nature, 386, 351-359. https://doi.org/10.1038/386351a0
  23. Prodhomme, P.Y., Beya-Wakata, A. and Bester, G. (2013), "Nonlinear piezoelectricity in wurtzite semiconductors", Phys. Rev. B, 88, 121304(R). https://doi.org/10.1103/PhysRevB.88.121304
  24. Shur, M.S. and Gaska, R. (2010), "Deep-ultraviolet light-emitting diodes", IEEE Tran. Elec. Dev., 57(1), 164-173. https://doi.org/10.1109/TED.2009.2035531
  25. Slater, J.C. and Koster, G.F. (1954), "Simplified LCAO method for the periodic potential problem", Phys. Rev., 94, 1498-1524. https://doi.org/10.1103/PhysRev.94.1498
  26. Sundaresan, S., Gaddipati, V. and Ahmed, S. (2014), "Effects of spontaneous and piezoelectric polarization fields on the electronic and optical properties in GaN/AlN quantum dots: Multimillion-atom $sp^3d^5s$* tightbinding simulations", Int. J. Numer. Model., Online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/jnm.2008.
  27. Usman, M., Tan, Y.H.M., Ryu, H., Ahmed, S., Krenner, H.J., Boykin, T.B. and Klimeck, G. (2011) "Quantitative excited state spectroscopy of a single InGaAs quantum dot molecule through multi-million atom electronic structure calculations", Nanotechnol., 22, 315709. https://doi.org/10.1088/0957-4484/22/31/315709
  28. Yalavarthi, K., Chimalgi, V. and Ahmed, S. (2014), "How important is nonlinear piezoelectricity in wurtzite GaN/InN/GaN disk-in-nanowire LED structures?" Opt. Quant. Electron., 46, 925-933. https://doi.org/10.1007/s11082-013-9806-x

Cited by

  1. Atomistic modeling of nonpolar m-plane InGaN disk-in-wire light emitters vol.16, pp.3, 2017, https://doi.org/10.1007/s10825-017-1024-5
  2. Million-atom tight-binding modeling of non-polar a-plane InGaN light emitters pp.1572-8137, 2018, https://doi.org/10.1007/s10825-018-1221-x