DOI QR코드

DOI QR Code

웨어러블 패키징용 Polydimethylsiloxane (PDMS) 신축성 기판의 강성도 변화거동

Variation of Elastic Stiffness of Polydimethylsiloxane (PDMS) Stretchable Substrates for Wearable Packaging Applications

  • 최정열 (홍익대학교 공과대학 신소재공학과) ;
  • 박대웅 (홍익대학교 공과대학 신소재공학과) ;
  • 오태성 (홍익대학교 공과대학 신소재공학과)
  • Choi, Jung-Yeol (Department of Materials Science and Engineering, Hongik University) ;
  • Park, Dae-Woong (Department of Materials Science and Engineering, Hongik University) ;
  • Oh, Tae Sung (Department of Materials Science and Engineering, Hongik University)
  • 투고 : 2014.12.19
  • 심사 : 2014.12.29
  • 발행 : 2014.12.30

초록

웨어러블 패키징용 신축성 기판을 개발하기 위해 투명한 PDMS인 Sylgard 184와 검정색 PDMS인 Sylgard 170에 대해 base/curing agent 혼합비에 따른 탄성계수의 변화거동을 분석하였다. Sylgard 184와 Sylgard 170의 공칭응력-공칭변형률 곡선에서 구한 공칭탄성계수에 비해 진응력-진변형률 관계로부터 구한 진탄성계수가 2배 이상 높았으며, 진탄성계수와 공칭탄성계수의 차이는 PDMS의 강성도가 높아질수록 증가하였다. Sylgard 184에서는 base/curing agent의 혼합비가 10일 때 탄성계수의 최대값을 얻을 수 있었으며, 이때 공칭탄성계수는 1.74 MPa, 진탄성계수는 3.57 MPa이었다. Sylgard 170에서는 base/curing agent 혼합비가 2일 때 탄성계수가 최대가 되었으며, 이때 공칭탄성계수와 진탄성계수는 각기 1.51 MPa와 3.64 MPa이었다.

In order to develop stretchable substrates for wearable packaging applications, the variation behavior of elastic modulus was evaluated for transparent PDMS Sylgard 184 and black PDMS Sylgard 170 as a function of the base/curing agent mixing ratio. Both for Sylgard 184 and Sylgard 170, the true elastic modulus evaluated on a true stress-true strain curve was higher more than two times compared to the engineering elastic modulus obtained from an engineering stres-sengineering strain curve, and their difference became larger with increasing the stiffness of the PDMS. Sylgard 184 exhibited a maximum engineering elastic modulus of 1.74 MPa and a maximum true elastic modulus of 3.57 MPa at the base/curing agent mixing ratio of 10. A maximum engineering elastic modulus of 1.51 MPa and a maximum true elastic modulus of 3.64 MPa were obtained for Sylgard 170 at the base/curing agent mixing ratio of 2.

키워드

참고문헌

  1. Wikipedia, Wikipedia Foundation Inc. Dec. (2013) from http://en.wikipedia.org/wiki/IPhone_(first_generation)
  2. J. Y. Choi and T. S. Oh, "Flip Chip Process on CNT-Ag Composite Pads for Stretchable Electronic Packaging", J. Microelectron. Packag. Soc., 20(4) 17 (2013). https://doi.org/10.6117/kmeps.2013.20.4.017
  3. M. Gonzalez, B. Vandervelde, W. Chistianens, Y.-Y. Hsu, F. Iker, F. Bossuyt, J. Vanfleteren, O. van der Sluis and P.H.M. Timmermans, "Thermo-Mechanical Analysis of Flexible and Stretchable Systems", 11th International Conference of Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems (EuroSimE), Berlin, 1, Institute of Electrical and Electronics Engineers (2010).
  4. J. H. Ahn, H. Lee and S. H. Choa, "Technology of Flexible Semiconductor/Memory Device", J. Microelectron. Packag. Soc., 20(2), 1 (2013). https://doi.org/10.6117/kmeps.2013.20.2.001
  5. J. Xiao, A. Carlson, Z. J. Liu, Y. Huang, H. Jiang and J. A. Rogers, "Stretchable and Compressible Thin Films of Stiff Materials on Compliant Wavy Substrates", App. Phys. Lett., 93, 013109 (2008). https://doi.org/10.1063/1.2955829
  6. T. Lher, D. Manessis, R. Heinrich, B. Schmied, J. Vanfleteren, J. DeBaets, A. Ostmann and H. Reichl, "Stretchable Electronic Systems", Proc. 59th Electronic Components and Technology Conference (ECTC), San Diego, 893, IEEE Components, Packaging and Manufacturing Technology Society (CPMT) (2009).
  7. T. Sekitani, Y. Noguchi, K. Hata, T. Fukushima, T. Aida and T. Someya, "A Rubberlike Stretchable Active Matrix Using Elastic Conductors", Science, 321, 1468 (2008). https://doi.org/10.1126/science.1160309
  8. D. H. Kim, J. H. Ahn, W. M. Choi, H. S. Kim, T. H. Kim, J. Song, Y. Y. Huang, Z. Liu, C. Lu and J. A. Rogers, "Stretchable and Foldable Silicon Integrated Circuits", Science, 320, 507 (2008). https://doi.org/10.1126/science.1154367
  9. M. Gonzalez, F. Axisa, M. V. Bulcke, D. Brosteaux, B. Vandevelde and J. Vanfleteren, "Design of Metal Interconnects for Stretchable Electronic Circuits", Microelectron. Reliab., 48, 825 (2008). https://doi.org/10.1016/j.microrel.2008.03.025
  10. T. Sekitani, H. Nakajima, H. Maeda, T. Fukushima, T. Aida, K. Hata, and T. Someya, "Stretchable Active-Matrix Organic Light-Emitting Diode Display Using Printable Elastic Conductors", Nature Mater., 8, 494 (2009). https://doi.org/10.1038/nmat2459
  11. J. H. Ahn and J. H. Je, "Stretchable Electronics: Materials, Architectures and Integrations", J. Phys. D: Appl. Phys., 45, 102001 (2012).
  12. D. H. Kim and J. A. Rogers, "Stretchable Electronics: Materials Strategies and Devices", Adv. Mater., 20, 4887 (2008). https://doi.org/10.1002/adma.200801788
  13. J. Y. Choi, D. H. Park and T. S. Oh, "Chip Interconnection Process for Smart Fabrics Using Flip-Chip Bonding of SnBi Solder", J. Microelectron. Packag. Soc., 19(3), 71 (2012). https://doi.org/10.6117/kmeps.2012.19.3.071
  14. S. P. Lacoura, S. Wagner, Z. Huang and Z. Suo, "Stretchable Gold Conductors on Elastomeric Substrates", Appl. Phys. Lett., 82, 2404 (2003). https://doi.org/10.1063/1.1565683
  15. Y. K. Son, J. E. Kim and I. Y. Cho, "Trends on Wearable Computer Technology and Market", Electronics and Telecommunications Trends, 23, 79 (2008).
  16. J. E. Kim, H. T. Jeong and I. Y. Cho, "Trend in Digital Clothing Technology", Electronics and Telecommunications Trends, 24, 20 (2009).
  17. T. Linz, R. Vieroth, C. Dils, M. Koch, T. Braun, K. F. Becker, C. Kallmayer and S. M. Hong, "Embroidered Interconnections and Encapsulation for Electronics in Textiles for Wearable Electronics Applications", Adv. Sci. Technol., 60, 85 (2008). https://doi.org/10.4028/www.scientific.net/AST.60.85
  18. A. Befahy, P. Lipnik, T. Pardoen, C. Nascimento, B. Patris, P. Bertrand and S. Yunus, "Thickness and Elastic Modulus of Plasma Treated PDMS Silica-like Surface Layer", Langmuir, 26(5), 3372 (2010). https://doi.org/10.1021/la903154y
  19. I. D. Johnston, D. K. McCluskey, C. K. L. Tan and M. C. Tracey, "Mechanical Characterization of Bulk Sylgard 184 for Microfluidics and Microengineering", J. Micromech. Microeng., 24, 035017 (2014). https://doi.org/10.1088/0960-1317/24/3/035017
  20. J. C. Lotters, W. Olthuis, P. H. Veltink and P. Bergveld, "The Mechanical Properties of the Rubber Elastic Polymer Polydimethylsilicone for Sensor Applications", J. Micromech. Microeng., 7, 145 (1997). https://doi.org/10.1088/0960-1317/7/3/017
  21. I. Wong and C. M. Ho, "Surface Molecular Property Modifications for Poly(dimethylsilicone) (PDMS) Based Microfluidic Devices", Microfluid Nanofluid, 7, 291 (2009). https://doi.org/10.1007/s10404-009-0443-4
  22. T. K. Kim, J. K. Kim and O. C. Jeong, "Measurement of Nonlinear Mechanical Properties of PDMS Elastomer", Microelectron. Eng., 88, 1982 (2011). https://doi.org/10.1016/j.mee.2010.12.108
  23. F. Schneider, T. Fellner, J. Wilde and U. Wallrabe, "Mechanical Properties of Silicones for MEMS", J. Micromech. Microeng., 18, 065008 (2008). https://doi.org/10.1088/0960-1317/18/6/065008
  24. E. Gutierrez and A. Groisman, "Measurement of Elastic Moduli of Silicone Gel Substrates with a Microfluidic Device", Plos One, 6(9), e25534 (2011). https://doi.org/10.1371/journal.pone.0025534
  25. A. Mata, A. J. Fleischman and S. Roy, "Characterization of Polydimethylsilicone (PDMS) Properties for Biomedical Micro/Nanosystems", Biomedical Microdevices, 7(4), 281 (2005). https://doi.org/10.1007/s10544-005-6070-2
  26. E. A. Wilder, S. Guo, S. Lin-Gibson, M. J. Fasolka and C. M. Stafford, "Measuring the Modulus of Soft Polymer Network via a Buckling-Based Metrology", Macromolecules, 39, 4138 (2009).
  27. Z. Wang, A. A. Volinsky and N. D. Gallant, "Crosslinking Effect on Polydimethylsiloxane Elastic Modulus Measured by Custom-Built Compression Instrument", J. Appl. Polym. Sci., 131(22) (2014).
  28. R. N. Palchesko, L. Zang, Y. Sun and A. W. Feinberg, "Development of Polydimethylsiloxane Substrates with Tunable Elastic Modulus to Study Cell Mechanobiology in Muscle and Nerve", Plos One, 7(12), e51499 (2012). https://doi.org/10.1371/journal.pone.0051499
  29. "Information about Dow Corning${(R)}$ brand Silicone Encapsulants", Dow Corning Corp., Midland (2005).
  30. G. E. Dieter, "Mechanical Metallurgy", SI Metric Edition, pp.37-58, McGraw-Hill Book Co., London (1988).
  31. K. Khanafer, A. Duprey, M. Schlicht and R. Berguer, "Effects of Strain Rate, Mixing Ratio, and Stress-Strain Definition on the Mechanical Behavior of the Polydimethylsiloxane (PDMS) Materials as Related to Its Biological Applications", Biomed Microdevices, 11, 503 (2009). https://doi.org/10.1007/s10544-008-9256-6
  32. J. H. Seo, K. Sakai and N. Yui, "Adsorption State of Fibronectin on Poly(dimethylsiloxane) Surfaces with Varied Stiffness Can Dominate Adhesion Density of Fibroblasts", Acta Biomater., 9, 5493 (2013). https://doi.org/10.1016/j.actbio.2012.10.015
  33. V. Studer, G. Hang, A. Pandolfi, M. Ortiz, W. CF. Anderson and S. R. Quake, "Scaling Properties of a Low-actuation Pressure Microfluidic Valve", J. Appl. Phys., 95, 393 (2004). https://doi.org/10.1063/1.1629781
  34. P. Du, I.-K. Lin, H. Lu and X. Zhang, "Extension of the Beam Theory for Polymer Bio-Transducers with Low Aspect Ratios and Viscoelastic Characteristics", J. Micromech. Microeng., 20, 095916 (2010).
  35. D. W. Inglis, "A Method of Reducing Pressure-Induced Deformation in Silicone Microfluidics", Biomicrofluidics, 4, 026504 (2010). https://doi.org/10.1063/1.3431715

피인용 문헌

  1. Study of Standardization and Test Certification for Wearable Smart Devices vol.23, pp.4, 2016, https://doi.org/10.6117/kmeps.2016.23.4.011
  2. Stretchable Characteristics of Thin Au Film on Polydimethylsiloxane Substrate with Parylene Intermediate Layer for Stretchable Electronic Packaging vol.47, pp.1, 2018, https://doi.org/10.1007/s11664-017-5722-3
  3. Deformation Behavior of Locally Stiffness-variant Stretchable Substrates Consisting of the Island Structure vol.22, pp.4, 2015, https://doi.org/10.6117/kmeps.2015.22.4.117
  4. Elastic Modulus of Locally Stiffness-variant Polydimethylsiloxane Substrates for Stretchable Electronic Packaging Applications vol.22, pp.4, 2015, https://doi.org/10.6117/kmeps.2015.22.4.091
  5. Comparison of Flip-Chip Bonding Characteristics on Rigid, Flexible, and Stretchable Substrates: Part II. Flip-Chip Bonding on Compliant Substrates vol.58, pp.8, 2017, https://doi.org/10.2320/matertrans.M2017066
  6. 신축 전자패키지 배선용 금속박막의 신축변형-저항 특성 II. Au, Pt 및 Cu 박막의 특성 비교 vol.24, pp.3, 2014, https://doi.org/10.6117/kmeps.2017.24.3.019
  7. 신축 전자패키지 배선용 금속박막의 신축변형-저항 특성 I. Parylene F 중간층 및 PDMS 기판의 Swelling에 의한 영향 vol.24, pp.3, 2014, https://doi.org/10.6117/kmeps.2017.24.3.027
  8. 비틀림 변형 중 ITO 필름의 시편 형태에 따른 기계적 전기적 파괴 연구 vol.24, pp.4, 2014, https://doi.org/10.6117/kmeps.2017.24.4.053
  9. 신축성 전자패키지용 강성도 국부변환 신축기판의 계면접착력 향상공정 vol.25, pp.4, 2014, https://doi.org/10.6117/kmeps.2018.25.4.111
  10. PDMS-Ecoflex 하이브리드 소재를 이용한 투명 신축성 기판의 기계적 및 광학적 특성 vol.25, pp.4, 2014, https://doi.org/10.6117/kmeps.2018.25.4.129
  11. Island-Bridge 구조의 강성도 경사형 신축 전자패키지의 유효 탄성계수 및 변형거동 분석 vol.26, pp.4, 2019, https://doi.org/10.6117/kmeps.2019.26.4.039
  12. PDMS 기반 강성도 경사형 신축 전자패키지의 신축변형-저항 특성 vol.26, pp.4, 2014, https://doi.org/10.6117/kmeps.2019.26.4.047
  13. 강성도 경사형 신축 전자패키지의 탄성특성 및 반복변형 신뢰성 vol.26, pp.4, 2014, https://doi.org/10.6117/kmeps.2019.26.4.055
  14. 나노 잔류응력 측정을 위한 비등방 압입자의 깊이별 응력환산계수 분석 vol.26, pp.4, 2019, https://doi.org/10.6117/kmeps.2019.26.4.095
  15. PDMS로 충진된 신축열전모듈의 신축특성과 발전특성 vol.26, pp.4, 2014, https://doi.org/10.6117/kmeps.2019.26.4.149
  16. 칩-섬유 배선을 위한 본딩 기술 vol.27, pp.4, 2020, https://doi.org/10.6117/kmeps.2020.27.4.001