DOI QR코드

DOI QR Code

Similarity Analysis of Indonesia Caldera to Mount Baekdu

인도네시아 칼데라 화산과 백두산의 유사성 분석

  • Received : 2014.10.25
  • Accepted : 2014.11.11
  • Published : 2014.12.31

Abstract

Caldera is a large depression commonly formed by collapse of the ground following explosive eruption of a large body of stored magma. On earth, calderas and caldera complexes range in size from kilometers to tens of kilometers. Historical eruptions associated with caldera collapse have led to huge fatalities in Indonesia as well as left global impacts. This study presents case study on calderas in Indonesia which resembles to Mount Baekdu located at the border of China and North Korea; in the perspectives of similar characteristics, principal hazard, recent symptom of volcanic activity and the threat if eruption occurs in the near future. Calculation by using weighted evaluation matrix for Mount Krakatau, Mount Tambora, Mount Ijen, Tengger Caldera, Mount Rinjani and Ranau Caldera were taken for the selection of a site for future case study.

칼데라는 저장되어 있는 마그마의 대규모 폭발적인 분화 다음에 발생하는 지반의 붕괴에 의해 형성된다. 지구상에서 칼데라는 수 킬로미터에서 수십 킬로미터의 크기에 이르는 다양성을 갖는다. 칼데라 붕괴에 관련된 인도네시아의 화산붕괴는 많은 사망자뿐만 아니라 전 지구적 영향을 미친 바 있다. 본 연구는 인도네시아 칼데라의 사례 연구를 통해 칼데라인 백두산과의 유상성을 분석하였다. 주요 분석 관점은 주요 위해 요인, 최근 화산활동의 증상 및 가까운 장래에 분화하는 경우의 위험성 등이며, Krakatau산, Tambora산, Ijen산, Tengger 칼데라, Rinjani산 및 Ranau 칼데라에 대한 가중 평가 매트릭스를 사용하여 유사성 분석을 수행하였다.

Keywords

References

  1. Agustan, F.K., Yoga, E.P., Hasanuddin, Z.A. (2012) Understanding The 2007-2008 Eruption of Anak Krakatau Volcano by Combining Remote Sensing Technique and Seismic Data, Int. J. Appl. Earth Obs. & Geoinf., 14, pp.73-82. https://doi.org/10.1016/j.jag.2011.08.011
  2. Cole, J.W., Milner, D.M., Spinks, K.D. (2004) Caldera and Caldera Structures: A Review, Earth-Sci. Rev., 69, pp.1-26.
  3. Conversation with Prof. Chris. N., A Volcanologist, Formerly with the USGS and Recently in EOS.
  4. Kim, N.I., Jung, S.Y., Lee, J.S., Kim, M.Y. (2007) Improved Method Evaluating the Stiffness Matrices of Thin-walled Beam on Elastic Foundations, J. Comput. Struct. Eng. Inst. Korea, 20(2), pp.113-125.
  5. Mock, L.C. (2003) Roof Design by Weighted Evaluation.
  6. Oppenheimer, C. (2003) Climatic, Environment and Human Consequences of the Largest known Historic Eruption: Tambora Volcano (Indonesia) 1815, Prog. Phys. Geogr., 27(2), pp.230-259. https://doi.org/10.1191/0309133303pp379ra
  7. Robock, A. (2002) Volcanic Eruption, Tambora. Encyclopedia of Global Environmental Change, Volume 1, The Earth System: Physical and Chemical Dimensions of Global Environmental Change, pp.737-738.
  8. Scher, S. (2012) Fumarolic Activity, Acid-Sulfate Altertaion and High-Sulfidation Epithermal Precious Metal Mineralization in the Crater of Kawah Ijen Volcano (Java, Indonesia), A Thesis submitted to McGill University.
  9. Smithsonian - Global Volcanism Program. http://www.volcano.si.edu http://www.photovolcanica.com http://vulcan.wr.usgs.gov/Volcanoes/Indonesia/description_krakatau_1883_eruption.html http://www.volcanodiscovery.com/tambora.html http://www.volcanolive.com
  10. Solikhin, A., Thouret, J.C., Gupta, A., Harris, Andy, J.L., Liew, S.C. (2012) Geology, Tectonics, and the 2002-2003 Eruption of the Semeru Volcano, Indonesia: Interpreted from High-spatial Resolution Satellite Imagery, Geomorphol., 138, pp.364-379. https://doi.org/10.1016/j.geomorph.2011.10.001
  11. U.S. Geological Survey Bulletin, Issue 1855, Part. 1
  12. Zaennudin, A. (2011) Perbandingan Antara Erupsi Gunung Bromo Tahun 2010-2011 dan Erupsi Kompleks Gunung Tengger, J. Lingkung. Dan Bencana Geol., 2(1), pp.21-37.