• Title/Summary/Keyword: mount baekdu

Search Result 2, Processing Time 0.015 seconds

Similarity Analysis of Indonesia Caldera to Mount Baekdu (인도네시아 칼데라 화산과 백두산의 유사성 분석)

  • Lee, Sungsu;Maharani, Yohana Noradika;Yi, Waon-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.6
    • /
    • pp.477-484
    • /
    • 2014
  • Caldera is a large depression commonly formed by collapse of the ground following explosive eruption of a large body of stored magma. On earth, calderas and caldera complexes range in size from kilometers to tens of kilometers. Historical eruptions associated with caldera collapse have led to huge fatalities in Indonesia as well as left global impacts. This study presents case study on calderas in Indonesia which resembles to Mount Baekdu located at the border of China and North Korea; in the perspectives of similar characteristics, principal hazard, recent symptom of volcanic activity and the threat if eruption occurs in the near future. Calculation by using weighted evaluation matrix for Mount Krakatau, Mount Tambora, Mount Ijen, Tengger Caldera, Mount Rinjani and Ranau Caldera were taken for the selection of a site for future case study.

Priority Data Handling in Pipeline-based Workflow (파이프라인 기반 워크플로우의 우선 데이터 처리 방안)

  • Jeon, Wonpyo;Heo, Daeyoung;Hwang, Suntae
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.12
    • /
    • pp.691-697
    • /
    • 2017
  • Volcanic ash has been predicted to be the main source of damage caused by a potential volcanic disaster around Mount Baekdu and the regions of the Korean peninsula. Computer simulations to predict the diffusion of volcanic ash should be performed according to prevalent meteorological situations within a predetermined time. Therefore, a workflow using pipelining is proposed to parallelize the software used for this computation. Due to the nature of volcanic calamities, the simulations need to be carried out for various plausible conditions given that the parameters cannot be precisely determined during the simulations, even at the time of a volcanic eruption. Among the given conditions, computations need to be first performed for the condition with the highest probability so that a response to the volcanic disaster can be provided using these results. Further action can then be performed later based on subsequent results. The computations need to be performed using a volcanic disaster damage prediction system on a computing server with limited computing performance. Hence, an optimal distribution of the computing resources is required. We propose a method through which specific data can be provided first to the proposed pipeline-based workflow.