DOI QR코드

DOI QR Code

Strength Prediction on Composite Laminates Including Material Nonlinearity and Continuum Damage Mechanics

재료 비선형과 연속체 손상역학을 고려한 복합 적층판의 강도 예측

  • Received : 2014.07.07
  • Accepted : 2014.10.20
  • Published : 2014.11.01

Abstract

This paper presents development and verification of the progressive failure analysis upon the composite laminates. Strength and stiffness of the fiber-reinforced composite are analyzed by property degradation approach with emphasis on the material nonlinearity and continuum damage mechanics (CDM). Longitudinal and transverse tensile modes derived from Hashin's failure criterion are used to predict the thresholds for damage initiation and growth. The modified Newton-Raphson iterative procedure is implemented for determining nonlinear elastic and viscoelastic constitutive relations. Laminar properties of the composite are obtained by experiments. Prediction on the un-notched tensile (UNT) specimen is performed under the laminate level. Stress-strain curves and strength results are compared with the experimental measurement. It is concluded that the present nonlinear CDM approach is capable of predicting the strength and stiffness more accurately than the corresponding linear CDM one does.

이 논문에서는 복합 적층판의 점진적 파손해석 기법을 개발하고 검증하였다. 강도 및 강성 예측의 정확성을 높이기 위해 재료 비선형 효과와 연속체 손상역학을 동시에 고려하였다. 파손 시작점과 성장을 예측하기 위한 식으로 Hashin의 판별식이 사용되었으며, 파손 모드는 수지인장/전단, 섬유 인장의 2가지 파손모드를 고려하였다. 비선형 탄성 및 점탄성의 구성방정식을 고려한 평형을 계산하기 위해 Newton-Raphson 방법이 사용되었다. 실험을 통해 얻어진 복합재료 단층의 물성을 이용하여 노치가 없는 시편에 인장력을 가했을 때 예상되는 적층복합재의 강도 및 변형률을 예측하였다. 이 경우 선형 물성과 저하계수만을 고려하여 예측된 강성/강도보다 실험결과에 근사하게 나타남을 확인하였다.

Keywords

References

  1. MSC. Software Corporation, PCL and Customization Guide, MSC.Software Corporation, 2001.
  2. Matzenmiller, A., Lubliner, J. and Taylor, R. L., "A Constitutive Model for Anisotropic Damage in Fiber-Composites," Mechanics of materials, Vol. 20, No. 2, 1995, pp. 125-152. https://doi.org/10.1016/0167-6636(94)00053-0
  3. Williams K.V. and Vaziri R., "Application of a damage mechanics model for predicting the impact response of composite materials," Computers & Structures, Vol. 79, No. 10, 2001, pp. 997-1011. https://doi.org/10.1016/S0045-7949(00)00200-5
  4. Yen, C.F., "Ballistic Impact Modeling of Composite Materials," Proceeding of the 7th International LS-DYNA Users Conference, Dearborn, Michigan, May 2002, pp. 6-15.
  5. Sang-Kuk Kim, Jin-Hwe Kweon, "Strength Analysis of Composite Double-lap Bolted Joints by Progressive Failure Theory Based on Damage Variable", Composite research, Vol 26, No. 2, 2013, pp 91-98 https://doi.org/10.7234/composres.2013.26.2.091
  6. Hyer, M. W. and Wolford, G. F., "Progressive Failure Analysis of Internally Pressurized Noncircular Composite Cylinders," Proceeding of the 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Denver, Colorado, April 2002, pp. 22-25.
  7. Hallet, S. R. and Wisnom, M. R., "Finite Element Investigation of the Effect of Progressive Damage in Notched Composites," Proceeding of the 14th International Conference on Composite Materials, San Diego, US, July 2003, Paper No. 0979.
  8. Camanho, P. P. and Matthews, F. L., "A Progressive Damage Model for Mechanically Fastened Joints in Composite Laminates," Journal of Composite Materials, Vol. 33, No. 24, 1999, pp. 2248-2279. https://doi.org/10.1177/002199839903302402
  9. Wang, J., Callus, P. J., and Bannister, M. K., "Experimental and numerical investigation of the tension and compression strength of un-notched and notched quasi-isotropic laminates," Composite Structures, Vol. 64, No. 3-4, 2004, pp. 297-306. https://doi.org/10.1016/j.compstruct.2003.08.012
  10. Van Paepegem, W., De Baere, I., and Degrieck, J., "Modelling the nonlinear shear stress-strain response of glass fibre-reinforced composites. Part I: experimental results," Composites science and technology, Vol. 66 No. 10, 2006, pp. 1455-1464. https://doi.org/10.1016/j.compscitech.2005.04.014
  11. Lafarie-Frenot, M. C., and Touchard, F., "Comparative in-plane shear behaviour of longcarbon-fibre composites with thermoset or thermoplastic matrix," Composites science and technology, Vol. 52, No. 3, 1994, pp. 417-425. https://doi.org/10.1016/0266-3538(94)90176-7
  12. Vogler, T. J., and Kyriakides, S., "Inelastic behavior of an AS4/PEEK composite under combined transverse compression and shear. Part I: experiments," International Journal of Plasticity, Vol. 15, No. 8, 1999, pp. 783-806. https://doi.org/10.1016/S0749-6419(99)00011-X
  13. Ishikawa T, Matsusima M, and Hayashi Y. "Hardening non-linear behaviour in longitudinal tension of unidirectional carbon composites," Journal of materials science, Vol. 20, No. 11, 1985, pp. 4075-4083. https://doi.org/10.1007/BF00552401
  14. Yokozeki, T., Ogasawara, T., and Ishikawa, T., "Effects of fiber nonlinear properties on the compressive strength prediction of unidirectional carbon-fiber composites," Composites science and technology, Vol. 65, No. 14, 2005, pp. 2140-2147. https://doi.org/10.1016/j.compscitech.2005.05.005
  15. Kontou, E., and Kallimanis, A., "Formulation of the viscoplastic behaviour of epoxyglass fiber composites," Journal of Composite Materials, Vol. 39, No. 8, 2005, pp. 711-721. https://doi.org/10.1177/0021998305048152
  16. Totry, E., Gonzales, C., LLorca, J., and Molina-Aldareguina, J. M., "Mechanisms of shear deformation in fiber-reinforced polymers: experiments and simulations," International journal of fracture, Vol. 158, No. 2, 2009, pp. 197-209. https://doi.org/10.1007/s10704-009-9353-4
  17. Guedes R. M., Torres Marques A., and Cardon A., "Analytical and experimental evaluation of non-linear viscoelastic-viscoplastic composite laminates under creep, creep-recovery, relaxation and ramp loading," Mechanics of Time-Dependent Materials, Vol. 2, No. 2, 1998, pp. 113-128. https://doi.org/10.1023/A:1009862009738
  18. Marlett, Kristin, Yeow Ng, and John Tomblin., "Hexcel 8552 IM7 Unidirectional Prepreg 190 gsm & 35% RC Qualification Material Property Data Report," National Center for Advanced Materials Performance, Wichita, Kansas. Test Report CAM-RP-2009-015, Rev. A, 2011, pp. 1-238.
  19. Marlett, Kristin, Yeow Ng, and John Tomblin., "Hexcel 8552 AS4 Unidirectional Prepreg 190 gsm & 35% RC Qualification Material Property Data Report," National Center for Advanced Materials Performance, Wichita, Kansas. Test Report CAM-RP-2009-015, Rev. A, 2011, pp. 1-278.
  20. So-Young Shin, Jin-Hwe Kweon, Jin-Ho Choi, "Progressive Failure Analysis of Unidirectional-Fabric Hybrid Laminated Composite Joints", Vol. 32, No. 1, 2004, pp. 37-43. https://doi.org/10.5139/JKSAS.2004.32.1.037
  21. Deslauriers, P., Cronin, D., & Duquette, A., "Numerical Modeling of Woven Carbon Composoite Failure," Proceeding of the 8th International LS-Dyna Users Conference, Dearborn, Michigan, May 2004, pp. 11-33.
  22. W. Weibull, "A Statistical Distribution Function of Wide Applicability", ASME Journal of Applied Mechanics, Transactions of the American Society of Mechanical Engineers, Sep. 1952, pp. 233-234.

Cited by

  1. A Study on the Evaluation of Fiber and Matrix Failures for Laminated Composites using Hashin·Puck Failure Criteria vol.52, pp.2, 2015, https://doi.org/10.3744/SNAK.2015.52.2.143