DOI QR코드

DOI QR Code

Selective Activation of Cohesive Elements using MPC

다중점 구속조건을 이용한 응집요소의 선택적 활성화 기법

  • Woo, Kyeongsik (School of Civil Engineering, Chungbuk National University)
  • Received : 2014.05.22
  • Accepted : 2014.10.20
  • Published : 2014.11.01

Abstract

In this paper, a selective activation strategy of cohesive elements using user subroutine UMPC was studied as an efficient solution for the added compliance problem in cohesive zone model crack propagation analyses. The cohesive elements were inserted between every bulk elements in region where cracks were expected to initiate and propagate, but initially not activated by tying the cohesive nodes using multi-point constraints. During analyses, the cohesive elements for which specified criterion was met were selectively activated by releasing the constraints. The effect of initial cohesive stiffness and the release criterion on the crack propagation behavior was carefully investigated.

본 논문에서는 응집영역 모델링 방법에 의한 균열전파 해석에서 발생하는 연성추가문제의 효과적인 해결방법으로 사용자 부프로그램 UMPC를 이용한 응집요소의 선택적 활성화 기법을 연구 하였다. 먼저 균열의 발생 및 전파가 예상되는 지역의 일반요소들 사이에 응집요소를 삽입하고 응집요소를 구성하는 절점에 다중점 구속조건을 적용함으로써 응집 요소를 비활성화 시킨 상태로 해석을 시작한 후, 해석 도중에 특정 조건을 만족하는 절점들에 대해서만 다중점 구속조건을 해제하여 응집요소를 선택적으로 활성화하는 전략을 사용하였다. 응집요소의 초기강성 및 다중점 구속조건 해제 지표가 균열전파 거동 및 계산시간에 미치는 영향을 체계적으로 조사하였다.

Keywords

References

  1. Barenblatt, G.I., "The mathematical theory of equilibrium cracks in brittle fracture", Advances in Applied Mechanics, Vol. 7, 1962, pp. 55-129. https://doi.org/10.1016/S0065-2156(08)70121-2
  2. Dugdale, D.S., "Yielding of steel sheets containing slits", Journal of the Mechanics and Physics of Solids, Vol. 8, 1960, pp. 100-108. https://doi.org/10.1016/0022-5096(60)90013-2
  3. Hillerborg, A., Modeer, M., and Petersson, P.E., "Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements", Cement and Concrete Research, Vol. 6, 1976, pp. 773-782. https://doi.org/10.1016/0008-8846(76)90007-7
  4. Tvergaard, V, Hutchinson J.W., "The relation between crack growth resistance and fracture process parameters in elastic-plastic solids", Journal of the Mechanics and Physics of Solids, Vol. 40, 1992, pp. 1377-1397. https://doi.org/10.1016/0022-5096(92)90020-3
  5. Xu, X.P. and Needleman A., "Numerical simulations of fast crack growth in brittle solids", Journal of the Mechanics and Physics of Solids, Vol. 42, 1994, pp. 1397-1434. https://doi.org/10.1016/0022-5096(94)90003-5
  6. Camacho, G.T. and Ortiz, M., "Computational modeling of impact damage in brittle materials", International Journal of Solids and Structures, Vol. 33, 1996, pp. 2899-2938. https://doi.org/10.1016/0020-7683(95)00255-3
  7. Belytschko, T. and Black, T., "Elastic crack growth in finite elements with minimal remeshing", International Journal for Numerical Methods in Engineering, Vol. 45, 1999, pp. 601-620. https://doi.org/10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
  8. Moes, N., Dolbow, J., and Belytschko, T., "A finite element method for crack growth without remeshing", International Journal for Numerical Methods in Engineering, Vol. 46, 1999, pp. 131-150. https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
  9. Geubelle, P.H. and Baylor, J., "Impact-induced delamination of laminated composites: a 2D simulation", Composites Part B Engineering, Vol. 29, No. 5, 1998, 589-602. https://doi.org/10.1016/S1359-8368(98)00013-4
  10. Cornec, A., Scheider, I., and Schwalbe, K-H., "On the practical application of the cohesive model", Engineering Fracture Mechanics, Vol. 70, 2003, pp. 1963-1987. https://doi.org/10.1016/S0013-7944(03)00134-6
  11. Tomar, V., Zhai, J., and Zhou, M., Bounds for Element Size in a Variable Stiffness Cohesive Finite Element Model, Int. Journal of Numerical Methods in Engineering, Vol. 61, 2004, pp. 1894-1920. https://doi.org/10.1002/nme.1138
  12. Turon, A., Davila, C., Camanho, P. and Costa, J., An Engineering Solution for Mesh Size Effects in the Simulation of Delamination Using Cohesive Zone Models, Engineering Fracture Mechanics, Vol. 4, 2007, pp. 1665-1682.
  13. Blal, N., Daridon, L., Monerie, Y. and Pagano, S., Aritificial Compliance Inherent to Intrisic Cohesive Zone Models: Criteion and Application to Planar Meshes, International Journal of Fracture, Vol. 178, 2012, pp. 71-83. https://doi.org/10.1007/s10704-012-9734-y
  14. Geibler, G. and Kaliske, M., Formulation and application of the initially rigid cohesive finite element method, Proc. in the Applied Mathematics and Mechanics, Vol. 9, 2009, pp. 197-198.
  15. Areias, P., Rabczuk, T., and Camanho, P.P., Initially rigid cohesive laws and fracture based on edge rotations, Computational Mechanics, Vol. 52, Issue 4, 2013, pp. 931-947. https://doi.org/10.1007/s00466-013-0855-6
  16. Pandolfi, A., Krysl, P., and Ortiz, M., Finite element simulation of ring expansion and fragmentation: The capturing of length and time scales through cohesive models of fracture, International Journal of Fracture, Vol. 95, 1999, pp. 279-297. https://doi.org/10.1023/A:1018672922734
  17. Kubair, D.V. and Geubelle, P.H., Comparative analysis of extrinsic and intrinsic cohesive models of dynamic fracture, International Journal of Solids and Structures, Vol. 40, 2003, pp. 3853-3868. https://doi.org/10.1016/S0020-7683(03)00171-9
  18. Sam, C.-H., Papoulia, K.D., and Vavasis, S.A., Obtaining initially rigid cohesive finite element models that are temporally convergent, Engineering Fracture Mechanics, Vol. 72, 2005, pp. 2247-2267. https://doi.org/10.1016/j.engfracmech.2004.12.008
  19. Hille, T.S., Suiker, A.S.J., and Turteltaub, S., Microcrack nucleation in thermal barrier coating systems, Engineering Fracture Mechanics, Vol. 76, 2009, pp. 813-825. https://doi.org/10.1016/j.engfracmech.2008.12.010
  20. ABAQUS 6.11 Documentation, Dassault Systemes Simulia Corp., Providence, RI, USA, 2011.
  21. Irwin, G.R., Handbuch der Physik, Vol. 6, 1958, pp. 551-590, Springer, Berlin.
  22. Park, H.S., Jang, J.J., Lee, K.H., Kim, K.H., Park, S.B., Kim Y.C., and Hong, S.H., Effect of Microstructure on Flexural Strength of Biomorphic C/SiC Composites, Int. J. Fracture, Vol. 151, 2008, pp. 233-245. https://doi.org/10.1007/s10704-008-9259-6