DOI QR코드

DOI QR Code

Preliminary Works of Contact via Formation of LCD Backplanes Using Silver Printing

  • Yang, Yong Suk (Components & Materials Research Laboratory, ETRI) ;
  • You, In-Kyu (Components & Materials Research Laboratory, ETRI) ;
  • Han, Hyun (Division of Advanced Materials, Solar Energy Materials Research Group, Korea Research Institute of Chemical Technology) ;
  • Koo, Jae Bon (Components & Materials Research Laboratory, ETRI) ;
  • Lim, Sang Chul (Components & Materials Research Laboratory, ETRI) ;
  • Jung, Soon-Won (Components & Materials Research Laboratory, ETRI) ;
  • Na, Bock Soon (Components & Materials Research Laboratory, ETRI) ;
  • Kim, Hye-Min (Components & Materials Research Laboratory, ETRI, Energy Application Technology Research Team, Korea Atomic Energy Research Institute) ;
  • Kim, Minseok (Components & Materials Research Laboratory, ETRI, School of Electrical Engineering, Korea University) ;
  • Moon, Seok-Hwan (Components & Materials Research Laboratory, ETRI)
  • Received : 2012.11.30
  • Accepted : 2013.06.03
  • Published : 2013.08.01

Abstract

The fabrication of a thin-film transistor backplane and a liquid-crystal display using printing processes can eliminate the need for photolithography and offers the potential to reduce the manufacturing costs. In this study, we prepare contact via structures through a poly(methyl methacrylate) polymer insulator layer using inkjet printing. When droplets of silver ink composed of a polymer solvent are placed onto the polymer insulator and annealed at high temperatures, the silver ink penetrates the interior of the polymer and generates conducting paths between the top and bottom metal lines through the partial dissolution and swelling of the polymer. The electrical property of various contact via-hole interconnections is investigated using a semiconductor characterization system.

Keywords

References

  1. S.S. Yoo et al., "Fabrication of TFTs for LCD Using 3-Mask Process," J. Inf. Disp., vol. 6, no. 3, 2005, pp. 18-21. https://doi.org/10.1080/15980316.2005.9651979
  2. S.J. Park et al., "Realization of 6Mask LTPS CMOS Panel for AMLCD Application," SID Symp. Dig. Tech. Papers, vol. 38, no. 1, 2007, pp. 73-75. https://doi.org/10.1889/1.2785229
  3. Nikkei FPD2006: Flat-Panel Display, report, Redondo Beach, CA: InterLingua, 2006, pp. 2-14.
  4. S. Jurichich, "Summary of the TFT LCD Materials Report," DisplaySearch, 2007, pp. 1-2. http://www.display search.com/products/samples/execsummary-materials.pdf
  5. W. den Boer and G.S. Smith, "Dual Select Diode AMLCDs: A Path Towards Scalable Two Mask Array Designs," J. SID, vol. 13, no. 3, 2005, pp. 199-204.
  6. S.H. Nam et al., "Enhancement of Roll Printing Accuracy for TFT-LCD," SID Symp. Dig. Tech. Papers, vol. 39, no. 1, 2008, pp. 648-650. https://doi.org/10.1889/1.3069747
  7. J. Kim et al., "Influence of Low Molecular Weight PDMS Chains in PDMS-Based Non-photolithography," MRS Proc., vol. 921, 2006, PROC-0921-T06-03.
  8. T. Shimoda, "Ink-Jet Technology for Fabrication Processes of Flat Panel Displays," SID Symp. Dig. Tech. Papers, vol. 34, no. 1, 2003, pp. 1174-1181.
  9. M. Lahti, S. Leppavouri, and V. Lantto, "Gravure-Offset Printing Technique for the Fabrication of Solid Films," Appl. Surface Sci., vol. 142, no. 1, Apr. 1999, pp. 367-370. https://doi.org/10.1016/S0169-4332(98)00676-X
  10. H. Sirringhaus et al., "High-Resolution Inkjet Printing of All-Polymer Transistor Circuits," Sci., vol. 290, no. 5499, 2000, pp. 2123-2126. https://doi.org/10.1126/science.290.5499.2123
  11. A.C. Arias et al., "All-Additive Ink-Jet-Printed Display Backplanes: Materials Development and Integration," J. SID, vol. 15, no. 7, 2007, pp. 485-490.
  12. K.J. Baeg et al., "Polymer Dielectrics and Orthogonal Solvent Effects for High-Performance Inkjet-Printed Top-Gated P-Channel Polymer Field-Effect Transistors," ETRI J., vol. 33, no. 6, Dec. 2011, pp. 887-896. https://doi.org/10.4218/etrij.11.0111.0321
  13. T. Kawase et al.., "Inkjet Printed Via-Hole Interconnections and Resistors for All-Polymer Transistor Circuits," Adv. Mater., vol. 13, no. 21, 2001, pp. 1601-1605. https://doi.org/10.1002/1521-4095(200111)13:21<1601::AID-ADMA1601>3.0.CO;2-X
  14. T. Kawase et al., "Inkjet Printing of Polymer Thin Film Transistors," Thin Solid Films, vol. 4438-439, 2003, pp. 279-287.
  15. Y-Y. Noh and H. Sirringhaus, "Ultra-thin Polymer Gate Dielectrics for Top-Gate Polymer Field-Effect Transistors," Organic Electron., vol. 10, no. 1, Feb. 2009, pp. 174-180. https://doi.org/10.1016/j.orgel.2008.10.021
  16. InkTec Co., Ltd., product brochure, p. 5. http://www.inktec.com/english/pdf/upload-pdf/(E)Electronic-Ink-3.3-72dpi(3).pdf
  17. S. Chung et al., "All-Inkjet-Printed Organic Thin-Film Transistors with Silver Gate, Source/Drain Electrodes," Jap. J. Appl. Phys., vol. 50, 2011, pp. 03CB05-1-03CB05-5. https://doi.org/10.7567/JJAP.50.03CB05

Cited by

  1. Influence of a self-assembled monolayer on indium-zinc-oxide semiconductor thin-film transistors vol.65, pp.10, 2014, https://doi.org/10.3938/jkps.65.1555
  2. Surface properties of ZrO2thin film under Cl2/Ar plasma using angle-resolved X-ray photoelectron spectroscopy vol.53, pp.8, 2013, https://doi.org/10.7567/jjap.53.08nb05
  3. The Fabrication of an Applicative Device for Trench Width and Depth Using Inductively Coupled Plasma and the Bulk Silicon Etching Process vol.15, pp.1, 2013, https://doi.org/10.4313/teem.2014.15.1.49