References
- M.J. Fitch and R. Osiander, "Terahertz Waves for Communications and Sensing," Johns Hopkins APL Technical Digest, vol. 25, no. 4, 2004, pp. 348-355.
- M. Tonouchi, "Cutting-Edge Terahertz Technology," Nature Photon., vol. 1, no. 2, Feb. 2007, pp. 97-105. https://doi.org/10.1038/nphoton.2007.3
- TeraView, Ltd., terahertz products. www.teraview.com/products/index.html
- Y. Ogawa et al., "Terahertz Sensing for Ensuring the Safety and Security," PIERS Online, vol. 4, no. 3, 2008, pp. 396-400. https://doi.org/10.2529/PIERS070831051620
- M. Koch, Terahertz Communications: A 2020 Vision, New York: Springer, 2007.
- T. Kosugi et al., "mm-Wave Long-Range Wireless Systems," IEEE Microw. Mag., vol. 10, issue 2, Apr. 2009, pp. 68-76. https://doi.org/10.1109/MMM.2008.931668
- H.-J. Song et al., "Broadband-Frequency-Tunable Sub-terahertz Wave Generation Using an Optical Comb, AWGs, Optical Switches, and a Uni-traveling Carrier Photodiode for Spectroscopic Applications," J. Lightw. Technol., vol. 26, no. 15, Aug. 2008, pp. 2521-2530. https://doi.org/10.1109/JLT.2008.927170
- M.J. Fice et al., "Telecommunications Technology-Based Terahertz Sources," Electron. Lett. - Special Supplement: Terahertz Technol., Dec. 2010, pp. S28-S31.
- T. Bryllert et. al., "11% Efficiency 100GHz InP-Based Heterostructure Barrier Varactor Quintupler," Electron. Lett., vol. 41, no. 3, Feb. 2005, pp. 131-132. https://doi.org/10.1049/el:20057633
- A. Maestrini, "Frequency Multipliers for Local Oscillators at THz Frequencies," 4th ESA Workshop Millimetre Wave Technol. Appl., Feb. 2006, pp.1-6.
- T.W. Crowe, D.W. Porterfield, and J.L. Hesler, "Multiplier-Based Sources of Terahertz Power," 33rd Int. Conf. Infrared, Millimeter, Terahertz Waves (IRMMW-THz), 2008.
- H. Eisele, "State of the Art and Future of Electronic Sources at Terahertz Frequencies," Electron. Lett.-Special Supplement: Terahertz Technol., Dec. 2010, pp. S8-S11.
- B. Razavi, "A 300-GHz Fundamental Oscillator in 65-nm CMOS Technology," IEEE J. Solid-State Circuits, vol. 46, no. 4, Apr. 2011, pp. 894-903. https://doi.org/10.1109/JSSC.2011.2108122
- W. Deal et al., "THz Monolithic Integrated Circuits Using InP High Electron Mobility Transistors," IEEE Trans. Terahertz Sci. Technol., vol. 1, no. 1, Sept. 2011, pp. 25-32. https://doi.org/10.1109/TTHZ.2011.2159539
- Q.J. Gu et al., "CMOS THz Generator with Frequency Selective Negative Resistance Tank," IEEE Trans. Terahertz Sci. Technol., vol. 2, no. 2, Mar. 2012, pp. 193-202. https://doi.org/10.1109/TTHZ.2011.2181922
- A. Maestrini et al., "Design and Characterization of a Room Temperature All-Solid-State Electronic Source Tunable from 2.48 to 2.72 THz," IEEE Trans. Terahertz Sci. Technol., vol. 2, no.2, Mar. 2012, pp. 177-185. https://doi.org/10.1109/TTHZ.2012.2183740
- D. Saeedkia and S. Safavi-Naeini, "Terahertz Photonics: Optoelectronic Techniques for Generation and Detection of Terahertz Waves," J. Lightw. Technol., vol. 26, no. 15, Aug. 2008, pp. 2409-2423. https://doi.org/10.1109/JLT.2008.927614
- G. Scalari et al., "Electrically Switchable, Two-Color Quantum Cascade Laser Emitting at 1.39 and 2.3 THz," Appl. Physics Lett., vol. 88, no. 14, Apr. 2006, pp. 141102-1-141102-3. https://doi.org/10.1063/1.2191407
- C. Worrall et al., "Continuous Wave Operation of a Superlattice Quantum Cascade Laser Emitting at 2 THz," Optical Express, vol. 14, no. 1, Jan. 2006, pp. 171-181. https://doi.org/10.1364/OPEX.14.000171
- G. Scalari et al., "THz and Sub-THz Quantum Cascade Lasers," Laser & Photon. Rev., vol. 3, no. 1-2, 2009, pp. 46-66.
- J. Faist and G. Scalari, "Unified Description of Resonant Tunneling Diodes and Terahertz Quantum Cascade Lasers," Electron. Lett.-Special Supplement: Terahertz Technol., Dec. 2010, pp. S46-S49.
- L.N. Langley et al., "Packaged Semiconductor Laser Optical Phase-Locked Loop (OPLL) for Photonic Generation, Processing and Transmission of Microwave Signals," IEEE Trans. Microw. Theory Tech., vol. 47, no. 7, July 1999, pp. 1257-1264. https://doi.org/10.1109/22.775465
- J.E. Bjamason et al., "ErAs:GaAs Photomixer with Two-Decade Tenability and 12 uW Peak Output Power," Appl. Physics Lett., vol. 85, no. 18, Nov. 2004, pp. 3983-3985. https://doi.org/10.1063/1.1813635
- A. Hirata et al., "120-GHz-Band Millimeter-Wave Photonics Wireless Link for 10-Gb/s Data Transmission," IEEE Trans. Microw. Theory Tech., vol. 54, no. 5, May 2006, pp. 1937-1944. https://doi.org/10.1109/TMTT.2006.872798
- T. Nagatsuma, "Terahertz Communications Technologies Based on Photonics and Electronics Approaches," European Wireless, Apr. 2012, pp. 1-4.
- J.J. O'Reilly et al., "Optical Generation of Very Narrow Linewidth Millimeter Wave Signals," Electron. Lett., vol. 28, no. 25, Dec. 1992, pp. 2309-2311.
- X. Yu, H. Zhang, and X. Zheng, "High Carrier Suppression Double Sideband Modulation Using Polarization State Rotation Filter and Optical External Modulator," Opt. Commun., vol. 267, no. 1, 2006, pp. 84-87.
- M. Tani et al., "Generation of Terahertz Radiation by Photomixing with Dual- and Multiple-Mode Lasers," Semicond. Sci. Technol., vo. 20, no. 7, July 2005, pp. S151-S163. https://doi.org/10.1088/0268-1242/20/7/005
- S. Kim and K.-Y. Kang, "Controlling Polarization of an Optical Carrier of Double Sideband-Suppressed Carrier Modulated Lightwave for Improving Characteristics of a Sub-terahertz Continuous Wave Generated by Photomixing," Microw. Optical Technol. Lett., vol. 53, no. 3, Mar. 2011, pp. 626-630. https://doi.org/10.1002/mop.25795
- R.T. Hawkins II et al., "Comparison of Fast Photodetector Response Measurements by Optical Heterodyne and Pulse Response Techniques," J. Lightw. Technol., vol. 9, no. 10, Oct. 1991, pp. 1289-1294. https://doi.org/10.1109/50.90926
- Hewlett-Packard Application Note 923, Schottky Barrier Diode Video Detectors, Hewlet Packard, Nov. 1999.
- S.-F. Chao et al., "A DC-11.5-GHz Low-Power, Wideband Amplifier Using Splitting-Load Inductive Peaking Technique," IEEE Microw. Wireless Compon. Lett., vol. 18, no. 7, July 2008, pp. 482-484. https://doi.org/10.1109/LMWC.2008.925099
Cited by
- Fabrication of low-loss optical interconnected waveguide using a replicated seamless large-area polymeric mold vol.65, pp.4, 2013, https://doi.org/10.3938/jkps.65.450
- Design and Analysis of Refractometer Based on Bend Waveguide Structure with Air Trench for Optical Sensor Applications vol.36, pp.5, 2014, https://doi.org/10.4218/etrij.14.0114.0413