References
- Alberini, C. M. (2009) Transcription factors in long-term memory and synaptic plasticity. Physiol. Rev. 89, 121-145. https://doi.org/10.1152/physrev.00017.2008
- Annunziato, L., Amoroso, S., Pannaccione, A., Cataldi, M., Pignataro, G., D'Alessio, A., Sirabella, R., Secondo, A., Sibaud, L. and Di Renzo, G. F. (2003) Apoptosis induced in neuronal cells by oxidative stress: role played by caspases and intracellular calcium ions. Toxicol. Lett. 139, 125-133. https://doi.org/10.1016/S0378-4274(02)00427-7
- Bartus, R. T., Dean, R. L., 3rd, Beer, B. and Lippa, A. S. (1982) The cholinergic hypothesis of geriatric memory dysfunction. Science 217, 408-414. https://doi.org/10.1126/science.7046051
- Beatty, W. W., Butters, N. and Janowsky, D. S. (1986) Patterns of memory failure after scopolamine treatment: implications for cholinergic hypotheses of dementia. Behav. Neural Biol. 45, 196-211. https://doi.org/10.1016/S0163-1047(86)90772-7
- Becker, R., Giacobini, E., Elble, R., McIlhany, M. and Sherman, K. (1988) Potential pharmacotherapy of Alzheimer disease. A comparison of various forms of physostigmine administration. Acta Neurol. Scand. Suppl. 116, 19-32.
- Ben-Barak, J. and Dudai, Y. (1980) Scopolamine induces an increase in muscarinic receptor level in rat hippocampus. Brain Res. 193, 309-313. https://doi.org/10.1016/0006-8993(80)90973-7
- Bierer, L. M., Haroutunian, V., Gabriel, S., Knott, P. J., Carlin, L. S., Purohit, D. P., Perl, D. P., Schmeidler, J., Kanof, P. and Davis, K. L. (1995) Neurochemical correlates of dementia severity in Alzheimer's disease: relative importance of the cholinergic deficits. J. Neurochem. 64, 749-760.
- Cheng, D. H. and Tang, X. C. (1998) Comparative studies of huperzine A, E2020, and tacrine on behavior and cholinesterase activities. Pharmacol. Biochem. Behav. 60, 377-386. https://doi.org/10.1016/S0091-3057(97)00601-1
- Collerton, D. (1986) Cholinergic function and intellectual decline in Alzheimer's disease. Neuroscience 19, 1-28. https://doi.org/10.1016/0306-4522(86)90002-3
- El-Sherbiny, D. A., Khalifa, A. E., Attia, A. S. and Eldenshary Eel, D. (2003) Hypericum perforatum extract demonstrates antioxidant properties against elevated rat brain oxidative status induced by amnestic dose of scopolamine. Pharmacol. Biochem. Behav. 76, 525-533. https://doi.org/10.1016/j.pbb.2003.09.014
- Ellman, G. L., Courtney, K. D., Andres, V., Jr. and Feather-Stone, R. M. (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7, 88-95. https://doi.org/10.1016/0006-2952(61)90145-9
- Fan, Y., Hu, J., Li, J., Yang, Z., Xin, X., Wang, J., Ding, J. and Geng, M. (2005) Effect of acidic oligosaccharide sugar chain on scopolamine-induced memory impairment in rats and its related mechanisms. Neurosci. Lett. 374, 222-226. https://doi.org/10.1016/j.neulet.2004.10.063
- Francis, P. T., Palmer, A. M., Snape, M. and Wilcock, G. K. (1999) The cholinergic hypothesis of Alzheimer's disease: a review of progress. J. Neurol. Neurosurg. Psychiatry 66, 137-147. https://doi.org/10.1136/jnnp.66.2.137
- Jeong, E. J., Lee, K. Y., Kim, S. H., Sung, S. H. and Kim, Y. C. (2008) Cognitive-enhancing and antioxidant activities of iridoid glycosides from Scrophularia buergeriana in scopolamine-treated mice. Eur. J. Pharmacol. 588, 78-84. https://doi.org/10.1016/j.ejphar.2008.04.015
- Jia, Y., Gall, C. M. and Lynch, G. (2010) Presynaptic BDNF promotes postsynaptic longterm potentiation in the dorsal striatum. J. Neurosci. 30, 14440-14445. https://doi.org/10.1523/JNEUROSCI.3310-10.2010
- Joseph, J. A., Strain, J. G., Jimenez, N. D. and Fisher, D. (1997) Oxidant injury in PC12 cells--a possible model of calcium "dysregulation" in aging: I. Selectivity of protection against oxidative stress. J. Neurochem. 69, 1252-1258.
- Kempermann, G. (2008) The neurogenic reserve hypothesis: what is adult hippocampal neurogenesis good for? Trends Neurosci. 31, 163-169. https://doi.org/10.1016/j.tins.2008.01.002
- Kim, D. H., Hung, T. M., Bae, K. H., Jung, J. W., Lee, S., Yoon, B. H., Cheong, J. H., Ko, K. H. and Ryu, J. H. (2006) Gomisin A improves scopolamine-induced memory impairment in mice. Eur. J. Pharmacol. 542, 129-135. https://doi.org/10.1016/j.ejphar.2006.06.015
- Komulainen, P., Pedersen, M., Hanninen, T., Bruunsgaard, H., Lakka, T. A., Kivipelto, M., Hassinen, M., Rauramaa, T. H., Pedersen, B. K. and Rauramaa, R. (2008) BDNF is a novel marker of cognitive function in ageing women: the DR's EXTRA Study. Neurobiol. Learn. Mem. 90, 596-603. https://doi.org/10.1016/j.nlm.2008.07.014
- Kopelman, M. D. and Corn, T. H. (1988) Cholinergic 'blockade' as a model for cholinergic depletion. A comparison of the memory defi-cits with those of Alzheimer-type dementia and the alcoholic Korsakoff syndrome. Brain 111 (Pt 5), 1079-1110. https://doi.org/10.1093/brain/111.5.1079
- Kwon, S. H., Kim, H. C., Lee, S. Y. and Jang, C. G. (2009) Loganin improves learning and memory impairments induced by scopolamine in mice. Eur. J. Pharmacol. 619, 44-49. https://doi.org/10.1016/j.ejphar.2009.06.062
- Kwon, S. H., Kim, M. J., Ma, S. X., You, I. J., Hwang, J. Y., Oh, J. H., Kim, S. Y., Kim, H. C., Lee, S. Y. and Jang, C. G. (2012) Eucommia ulmoides Oliv. Bark. protects against hydrogen peroxide-induced neuronal cell death in SH-SY5Y cells. J. Ethnopharmacol. 142, 337-345. https://doi.org/10.1016/j.jep.2012.04.010
- Kwon, S. H., Lee, H. K., Kim, J. A., Hong, S. I., Kim, H. C., Jo, T. H., Park, Y. I., Lee, C. K., Kim, Y. B., Lee, S. Y. and Jang, C. G. (2010) Neuroprotective effects of chlorogenic acid on scopolamineinduced amnesia via anti-acetylcholinesterase and anti-oxidative activities in mice. Eur. J. Pharmacol. 649, 210-217. https://doi.org/10.1016/j.ejphar.2010.09.001
- Kwon, S. H., Lee, H. K., Kim, J. A., Hong, S. I., Kim, S. Y., Jo, T. H., Park, Y. I., Lee, C. K., Kim, Y. B., Lee, S. Y. and Jang, C. G. (2011) Neuroprotective effects of Eucommia ulmoides Oliv. Bark on amyloid beta(25-35)-induced learning and memory impairments in mice. Neurosci. Lett. 487, 123-127. https://doi.org/10.1016/j.neulet.2010.10.042
- LeDoux, J. E. (1993) Emotional memory systems in the brain. Behav. Brain Res. 58, 69-79. https://doi.org/10.1016/0166-4328(93)90091-4
- Lee, M. K., Cho, S. Y., Kim, D. J., Jang, J. Y., Shin, K. H., Park, S. A., Park, E. M., Lee, J. S., Choi, M. S. and Kim, M. J. (2005) Duzhong (Eucommia ulmoides Oliv.) cortex water extract alters heme biosynthesis and erythrocyte antioxidant defense system in leadadministered rats. J. Med. Food 8, 86-92. https://doi.org/10.1089/jmf.2005.8.86
- Lovell, M. A., Ehmann, W. D., Butler, S. M. and Markesbery, W. R. (1995) Elevated thiobarbituric acid-reactive substances and antioxidant enzyme activity in the brain in Alzheimer's disease. Neurology 45, 1594-1601. https://doi.org/10.1212/WNL.45.8.1594
- Marcus, D. L., Thomas, C., Rodriguez, C., Simberkoff, K., Tsai, J. S., Strafaci, J. A. and Freedman, M. L. (1998) Increased peroxidation and reduced antioxidant enzyme activity in Alzheimer's disease. Exp. Neurol. 150, 40-44. https://doi.org/10.1006/exnr.1997.6750
- Mizuno, M., Yamada, K., Maekawa, N., Saito, K., Seishima, M. and Nabeshima, T. (2002) CREB phosphorylation as a molecular marker of memory processing in the hippocampus for spatial learning. Behav. Brain Res. 133, 135-141. https://doi.org/10.1016/S0166-4328(01)00470-3
- O'Connell, C., Gallagher, H. C., O'Malley, A., Bourke, M. and Regan, C. M. (2000) CREB phosphorylation coincides with transient synapse formation in the rat hippocampal dentate gyrus following avoidance learning. Neural Plast. 7, 279-289. https://doi.org/10.1155/NP.2000.279
- Phillips, H. S., Hains, J. M., Armanini, M., Laramee, G. R., Johnson, S. A. and Winslow, J. W. (1991) BDNF mRNA is decreased in the hippocampus of individuals with Alzheimer's disease. Neuron 7, 695-702. https://doi.org/10.1016/0896-6273(91)90273-3
- Sakurai, T., Kato, T., Mori, K., Takano, E., Watabe, S. and Nabeshima, T. (1998) Nefiracetam elevates extracellular acetylcholine level in the frontal cortex of rats with cerebral cholinergic dysfunctions: an in vivo microdialysis study. Neurosci. Lett. 246, 69-72. https://doi.org/10.1016/S0304-3940(98)00244-4
- Selkoe, D. J. (1994) Alzheimer's disease: a central role for amyloid. J. Neuropathol. Exp. Neurol. 53, 438-447. https://doi.org/10.1097/00005072-199409000-00003
- Singh, B., Bhat, T. K. and Singh, B. (2003) Potential therapeutic applications of some antinutritional plant secondary metabolites. J. Agric. Food Chem. 51, 5579-5597. https://doi.org/10.1021/jf021150r
- Wang, W., Sun, F., An, Y., Ai, H., Zhang, L., Huang, W. and Li, L. (2009) Morroniside protects human neuroblastoma SH-SY5Y cells against hydrogen peroxide-induced cytotoxicity. Eur. J. Pharmacol. 613, 19-23. https://doi.org/10.1016/j.ejphar.2009.04.013
- Yamada, K. and Nabeshima, T. (2003) Brain-derived neurotrophic factor/ TrkB signaling in memory processes. J. Pharmacol. Sci. 91, 267-270. https://doi.org/10.1254/jphs.91.267
- Yu, S. P., Canzoniero, L. M. and Choi, D. W. (2001) Ion homeostasis and apoptosis. Curr. Opin. Cell Biol. 13, 405-411. https://doi.org/10.1016/S0955-0674(00)00228-3
Cited by
- Phytochemicals That Regulate Neurodegenerative Disease by Targeting Neurotrophins: A Comprehensive Review vol.2015, 2015, https://doi.org/10.1155/2015/814068
- Precautionary Ellagic Acid Treatment Ameliorates Chronically Administered Scopolamine Induced Alzheimer's Type Memory and Cognitive Dysfunctions in Rats vol.6, pp.5, 2015, https://doi.org/10.5567/pharmacologia.2015.192.212
- Effect of systemic high dose enzyme replacement therapy on the improvement of CNS defects in a mouse model of mucopolysaccharidosis type II vol.10, pp.1, 2015, https://doi.org/10.1186/s13023-015-0356-0
- Antidepressant Potential of Chlorogenic Acid-Enriched Extract from Eucommia ulmoides Oliver Bark with Neuron Protection and Promotion of Serotonin Release through Enhancing Synapsin I Expression vol.21, pp.3, 2016, https://doi.org/10.3390/molecules21030260
- Antiamnesic and Antioxidants Effects of Ferulago angulata Essential Oil Against Scopolamine-Induced Memory Impairment in Laboratory Rats vol.40, pp.9, 2015, https://doi.org/10.1007/s11064-015-1662-6
- Lactucopicrin ameliorates oxidative stress mediated by scopolamine-induced neurotoxicity through activation of the NRF2 pathway vol.99, 2016, https://doi.org/10.1016/j.neuint.2016.06.010
- Effervescent Granules Prepared UsingEucommia ulmoidesOliv. and Moso Bamboo Leaves: Hypoglycemic Activity in HepG2 Cells vol.2016, 2016, https://doi.org/10.1155/2016/6362094
- The Protective Effect of Aucubin from Eucommia ulmoides Against Status Epilepticus by Inducing Autophagy and Inhibiting Necroptosis vol.45, pp.03, 2017, https://doi.org/10.1142/S0192415X17500331
- Neuroprotective effects of Eucommia ulmoides Oliv. and its bioactive constituent work via ameliorating the ubiquitin-proteasome system vol.15, pp.1, 2015, https://doi.org/10.1186/s12906-015-0675-7
- Deer Bone Extract Prevents Against Scopolamine-Induced Memory Impairment in Mice vol.18, pp.2, 2015, https://doi.org/10.1089/jmf.2014.3187
- Involvement of the Nrf2/HO-1 signaling pathway in sulfuretin-induced protection against amyloid beta25–35 neurotoxicity vol.304, 2015, https://doi.org/10.1016/j.neuroscience.2015.07.030
- Neuroprotective and Antiamnesic Effects ofMitragyna inermisWilld (Rubiaceae) on Scopolamine-Induced Memory Impairment in Mice vol.2017, 2017, https://doi.org/10.1155/2017/5952897
- N-palmitoyl serotonin alleviates scopolamine-induced memory impairment via regulation of cholinergic and antioxidant systems, and expression of BDNF and p-CREB in mice vol.242, 2015, https://doi.org/10.1016/j.cbi.2015.09.016
- Impairment of opiate-mediated behaviors by the selective TRPV1 antagonist SB366791 2017, https://doi.org/10.1111/adb.12460
- Differential metformin dose-dependent effects on cognition in rats: role of Akt vol.233, pp.13, 2016, https://doi.org/10.1007/s00213-016-4301-2
- Linalool Ameliorates Memory Loss and Behavioral Impairment Induced by REM-Sleep Deprivation through the Serotonergic Pathway vol.26, pp.4, 2018, https://doi.org/10.4062/biomolther.2018.081
- Medicinal plants with acetylcholinesterase inhibitory activity vol.29, pp.5, 2018, https://doi.org/10.1515/revneuro-2017-0054
- The phosphodiesterase 5 inhibitor, KJH-1002, reverses a mouse model of amnesia by activating a cGMP/cAMP response element binding protein pathway and decreasing oxidative damage vol.175, pp.16, 2018, https://doi.org/10.1111/bph.14377
- Comparative Evaluation of Prosopis cineraria (L.) Druce and Its ZnO Nanoparticles on Scopolamine Induced Amnesia vol.9, pp.1663-9812, 2018, https://doi.org/10.3389/fphar.2018.00549
- The Memory-Enhancing Effects of Liquiritigenin by Activation of NMDA Receptors and the CREB Signaling Pathway in Mice vol.26, pp.2, 2018, https://doi.org/10.4062/biomolther.2016.284
- Cognitive Improving Effects by Highbush Blueberry (Vaccinium crymbosum L.) Vinegar on Scopolamine-Induced Amnesia Mice Model vol.66, pp.1, 2013, https://doi.org/10.1021/acs.jafc.7b03965
- 6,7,4′-Trihydroxyisoflavone, a major metabolite of daidzein, improves learning and memory via the cholinergic system and the p-CREB/BDNF signaling pathway in mice vol.826, pp.None, 2018, https://doi.org/10.1016/j.ejphar.2018.02.048
- Dynamic Changes in Metabolite Accumulation and the Transcriptome during Leaf Growth and Development in Eucommia ulmoides vol.20, pp.16, 2013, https://doi.org/10.3390/ijms20164030
- Prevention of short-term memory impairment by Bryophyllum pinnatum (Lam.) Oken and its effect on acetylcholinesterase changes in CCl4-induced neurotoxicity in rats vol.30, pp.5, 2013, https://doi.org/10.1515/jbcpp-2018-0161
- Chlorogenic acid protects PC12 cells against corticosterone-induced neurotoxicity related to inhibition of autophagy and apoptosis vol.20, pp.1, 2013, https://doi.org/10.1186/s40360-019-0336-4
- Light exposure during late night attenuates the risk of scopolamine-induced Alzheimer disease in aged rats vol.7, pp.1, 2020, https://doi.org/10.1080/2314808x.2020.1763033
- Eucommia Leaf Extract Induces BDNF Production in Rat Hypothalamus and Enhances Lipid Metabolism and Aerobic Glycolysis in Rat Liver vol.13, pp.None, 2020, https://doi.org/10.2174/1874467213666200505094631
- Enteromorpha prolifera Extract Improves Memory in Scopolamine-Treated Mice via Downregulating Amyloid-β Expression and Upregulating BDNF/TrkB Pathway vol.9, pp.7, 2013, https://doi.org/10.3390/antiox9070620
- Enhanced Healthspan in Caenorhabditis elegans Treated With Extracts From the Traditional Chinese Medicine Plants Cuscuta chinensis Lam. and Eucommia ulmoides Oliv. vol.12, pp.None, 2021, https://doi.org/10.3389/fphar.2021.604435
- Comparison of Pinoresinol and its Diglucoside on their ADME Properties and Vasorelaxant Effects on Phenylephrine-Induced Model vol.12, pp.None, 2013, https://doi.org/10.3389/fphar.2021.695530