DOI QR코드

DOI QR Code

Direct Analysis in Real Time Mass Spectrometry (DART-MS) Analysis of Skin Metabolome Changes in the Ultraviolet B-Induced Mice

  • Park, Hye Min (Department of Bioscience and Biotechnology, Kon-Kuk University) ;
  • Kim, Hye Jin (Division of Pharmacognosy, College of Pharmacy, Kyung Hee University) ;
  • Jang, Young Pyo (Division of Pharmacognosy, College of Pharmacy, Kyung Hee University) ;
  • Kim, Sun Yeou (College of Pharmacy, Gachon University)
  • Received : 2013.09.09
  • Accepted : 2013.10.24
  • Published : 2013.11.30

Abstract

Ultraviolet (UV) radiation is a major environmental factor that leads to acute and chronic reactions in the human skin. UV exposure induces wrinkle formation, DNA damage, and generation of reactive oxygen species (ROS). Most mechanistic studies of skin physiology and pharmacology related with UV-irradiated skin have focused on proteins and their related gene expression or single-targeted small molecules. The present study identified and analyzed the alteration of skin metabolites following UVB irradiation and topical retinyl palmitate (RP, 5%) treatment in hairless mice using direct analysis in real time (DART) time-of-flight mass spectrometry (TOF-MS) with multivariate analysis. Under the negative ion mode, the DART ion source successfully ionized various fatty acids including palmitoleic and linolenic acid. From DART-TOF-MS fingerprints measured in positive mode, the prominent dehydrated ion peak (m/z: 369, M+H-$H_2O$) of cholesterol was characterized in all three groups. In positive mode, the discrimination among three groups was much clearer than that in negative mode by using multivariate analysis of orthogonal partial-least squares-discriminant analysis (OPLS-DA). DART-TOF-MS can ionize various small organic molecules in living tissues and is an efficient alternative analytical tool for acquiring full chemical fingerprints from living tissues without requiring sample preparation. DART-MS measurement of skin tissue with multivariate analysis proved to be a powerful method to discriminate between experimental groups and to find biomarkers for various experiment models in skin dermatological research.

Keywords

References

  1. Abaffy, T., Duncan, R., Riemer, D. D., Tietje, O., Elgart, G., Milikowski, C. and DeFazio, R. A. (2010) Differential volatile signatures from skin, naevi and melanoma: a novel approach to detect a pathological process. PLoS One 5, e13813. https://doi.org/10.1371/journal.pone.0013813
  2. Calder, P. C. (2003) N-3 polyunsaturated fatty acids and infl ammation: from molecular biology to the clinic. Lipids 38, 343-352. https://doi.org/10.1007/s11745-003-1068-y
  3. Chaqour, B., Bellon, G., Seite, S., Borel, J. P. and Fourtanier, A. (1997) All-trans-retinoic acid enhances collagen gene expression in irradiated and non-irradiated hairless mouse skin. J. Photochem. Photobiol. B 37, 52-59. https://doi.org/10.1016/S1011-1344(96)07399-X
  4. Chaquour, B., Seite, S., Coutant, K., Fourtanier, A., Borel, J. P. and Bellon, G. (1995) Chronic UVB-and all-trans retinoic-acid-induced qualitative and quantitative changes in hairless mouse skin. J. Photochem. Photobiol. B 28, 125-135.
  5. Cody, R. B., Laramee, J. A. and Durst, H. D. (2005) Versatile new ion source for the analysis of materials in open air under ambient conditions. Anal. Chem. 77, 2297-2302. https://doi.org/10.1021/ac050162j
  6. Eckhart, L., Schmidt, M., Mildner, M., Mlitz, V., Abtin, A., Ballaun, C., Fischer, H., Mrass, P. and Tschachler, E. (2008) Histidase expression in human epidermal keratinocytes: regulation by differentiation status and all-trans retinoic acid. J. Dermatol. Sci. 50, 209-215. https://doi.org/10.1016/j.jdermsci.2007.12.009
  7. Fisher, G. J., Datta, S., Talwar, H. S., Wang, Z., Varani, J., Kang, S. and Voorhees, J. J. (1996) Molecular basis of sun-induced preamature skin ageing and retinoid antagonism. Nature 379, 335-339. https://doi.org/10.1038/379335a0
  8. Fisher, G. J., Datta, S., Wang, Z., Li, X. Y., Quan, T., Chung, J. H., Kang, S. and Voorhees, J. J. (2000) c-Jun-dependent inhibition of cutaneous procollagen transcription following ultraviolet irradiation is reversed by all-trans retinoic acid. J. Clin. Invest. 106, 663-670. https://doi.org/10.1172/JCI9362
  9. Fu, P. P., Xia, Q., Yin, J. J., Cherng, S. H., Yan, J., Mei, N., Chen, T., Boudreau, M. D., Howard, P. C. and Wamer, W. G. (2007) Photodecomposition of vitamin A and photobiological implications for the skin. Photochem. Photobiol. 83, 409-424. https://doi.org/10.1562/2006-10-23-IR-1065
  10. George, K. S., Elyassaki, W., Wu, Q. and Wu, S. (2012) The role of cholesterol in UV light B-induced apoptosis. Photochem. Photobiol. 88, 1191-1197. https://doi.org/10.1111/j.1751-1097.2011.01038.x
  11. Guahk, G. H., Ha, S. K., Jung, H. S., Kang, C., Kim, C. H., Kim, Y. B. and Kim, S. Y. (2010) Zingiber offi cinale protects HaCaT cells and C57BL/6 mice from ultraviolet B-induced infl ammation. J. Med. Food 13, 673-680. https://doi.org/10.1089/jmf.2009.1239
  12. Holleran, W. M., Uchida, Y., Halkier-Sorensen, L., Haratake, A., Hara, M., Epstein, J. H. and Elias, P. M. (1997) Structural and biochemical basis for the UVB-induced alterations in epidermal barrier function. Photodermatol. Photoimmunol. Photomed. 13, 117-128. https://doi.org/10.1111/j.1600-0781.1997.tb00214.x
  13. Jackson, J. E. (1991) A User's Guide to Principal Components. John Wiley, NewYork.
  14. Kawamoto, S., Kita, M., Hamada, M., Aki, T., Shigeta, S., Suzuki, O. and Ono, K. (2001) Lack of effect of the abnormal fatty acid metabolism in NC/Nga mice on their atopic dermatitis. Biosci. Biotechnol. Biochem. 65, 431-434. https://doi.org/10.1271/bbb.65.431
  15. Kim, E. J., Kim, M. K., Jin, X. J., Oh, J. H., Kim, J. E. and Chung, J. H. (2010a) Skin aging and photoaging alter fatty acids composition, including 11,14,17-eicosatrienoic acid, in the epidermis of human skin. J. Korean Med. Sci. 25, 980-983. https://doi.org/10.3346/jkms.2010.25.6.980
  16. Kim, E. J., Jin, X. J., Kim, Y. K., Oh, I. K., Kim, J. E., Park, C. H. and Chung, J. H. (2010b) UV decreases the synthesis of free fatty acids and triglycerides in the epidermis of human skin in vivo, contributing to development of skin photoaging. J. Dermatol. Sci. 57, 19-26. https://doi.org/10.1016/j.jdermsci.2009.10.008
  17. Kim, H. J., Jee, E. H., Ahn, K. S., Choi, H. S. and Jang, Y. P. (2010c) Identification of marker compounds in herbal drugs on TLC with DART-MS. Arch. Pharm. Res. 33, 1355-1359. https://doi.org/10.1007/s12272-010-0909-7
  18. Knudson, A., Sturges, S. and Bryan, W. R. (1939) Cholesterol content of skin, blood, and tumor tissue in rats irradiated with ultraviolet light. J. Biol. Chem. 128, 721-727.
  19. Lampe, M. A., Burlingame, A. L., Whitney, J., Williams, M. L., Brown, B. E., Roitman, E. and Elias, P. M. (1983) Human stratum corneum lipids: characterization and regional variations. J. Lipid Res. 24, 120-130.
  20. Lejeune, F. J. (1986) Epidemiology and etiology of malignant melanoma. Biomed. Pharmacother. 40, 91-99.
  21. Merle, C., Laugel, C. and Baillet-Guffroy, A. (2008) Spectral monitoring of photoirradiated skin lipids: MS and IR approaches. Chem. Phys. Lipids 154, 56-63. https://doi.org/10.1016/j.chemphyslip.2008.03.011
  22. Morlock, G. and Ueda, Y. (2007) New coupling of planar chromatography with direct analysis in real time mass spectrometry. J. Chromatogr. A 1143, 243-251. https://doi.org/10.1016/j.chroma.2006.12.056
  23. Norlen, L., Nicander, I., Lundsjo, A., Cronholm, T. and Forslind, B. (1998) A new HPLC-based method for the quantitative analysis of inner stratum corneum lipids with special reference to the free fatty acid fraction. Arch. Dermatol. Res. 290, 508-516. https://doi.org/10.1007/s004030050344
  24. Pacheco-Palencia, L. A., Noratto, G., Hingorani, L., Talcott, S. T. and Mertens-Talcott, S. U. (2008) Protective effects of standardized pomegranate (Punicagranatum L.) polyphenolic extract in ultraviolet-irradiated human skin fibroblasts. J. Agric. Food Chem. 56, 8434-8441. https://doi.org/10.1021/jf8005307
  25. Park, H. M., Moon, E., Kim, A. J., Kim, M. H., Lee, S., Lee, J. B., Park, Y. K., Jung, H. S., Kim, Y. B. and Kim, S. Y. (2010) Extract of Punica granatum inhibits skin photoaging induced by UVB irradiation. Int. J. Dermatol. 49, 276-282. https://doi.org/10.1111/j.1365-4632.2009.04269.x
  26. Picardo, M., Zompetta, C., De Luca, C., Cirone, M., Faggioni, A., Nazzaro-Porro, M., Passi, S. and Prota, G. (1991) Role of skin surface lipids in UV-induced epidermal cell changes. Arch. Dermatol. Res. 283, 191-197. https://doi.org/10.1007/BF00372061
  27. Pierce, C. Y., Barr, J. R., Cody, R. B., Massung, R. F., Woolfi tt, A. R., Moura, H., Thompson, H. A. and Fernandez, F. M. (2007) Ambient generation of fatty acid methyl ester ions from bacterial whole cells by direct analysis in real time (DART) mass spectrometry. Chem. Commun. 807-809.
  28. Robosky, L. C., Wade, K., Woolson, D., Baker, J. D., Manning, M. L., Gage, D. A. and Reily, M. D. (2008) Quantitative evaluation of sebum lipid components with nuclear magnetic resonance. J. Lipid Res. 49, 686-692. https://doi.org/10.1194/jlr.D700035-JLR200
  29. Schallreuter, K. U., Hasse, S., Rokos, H., Chavan, B., Shalbaf, M., Spencer, J. D. and Wood, J. M. (2009) Cholesterol regulates melanogenesis in human epidermal melanocytes and melanoma cells. Exp. Dermatol. 18, 680-688. https://doi.org/10.1111/j.1600-0625.2009.00850.x
  30. Trygg, J., Holmes, E. and Lundstedt, T. (2007) Chemometrics in metabonomics. J. Proteome Res. 6, 469-479. https://doi.org/10.1021/pr060594q
  31. Trygg, J. and Wold, S. (2002) Orthogonal projections to latent structures (O-PLS). J. Chemom. 16, 119-128. https://doi.org/10.1002/cem.695
  32. Tsai, Y. C., Chang, H. W., Chang, T. T., Lee, M. S., Chu, Y. T. and Hung, C. H. (2008) Effects of all-trans retinoic acid on Th1-and Th2-related chemokines production in monocytes. Inflammation 31, 428-433. https://doi.org/10.1007/s10753-008-9095-x
  33. Williams, J. P., Patel, V. J., Holland, R. and Scrivens, J. H. (2006) The use of recently described ionisation techniques for the rapid analysis of some common drugs and samples of biological origin. Rapid Commun. Mass Spectrom. 20, 1447-1456. https://doi.org/10.1002/rcm.2470
  34. Wold, S., Ruhe, A., Wold, H. and Dunn, W. J. III (1984) The collinearity problem in linear regression. The partial least squares (PLS) approach to generalized inverse. SIAM J. Sci. Stat. Comput. 5, 735-743. https://doi.org/10.1137/0905052
  35. Wold, S., Trygg, J., Berglund, A. and Antti, H. (2001) Some recent developments in PLS modeling. Chemom. Intell. Lab. Sysm. 58, 131-150. https://doi.org/10.1016/S0169-7439(01)00156-3
  36. Yan, J., Wamer, W. G., Howard, P. C., Boudreau, M. D. and Fu, P. P. (2006a) Levels of retinyl palmitate and retinol in the stratum corneum, epidermis, and dermis of female SKH-1 mice topically treated with retinyl palmitate. Toxicol. Ind. Health 22, 181-191. https://doi.org/10.1191/0748233706th253oa
  37. Yan, J., Xia, Q., Webb, P., Warbritton, A. R., Wamer, W. G., Howard, P. C., Boudreau, M. and Fu, P. P. (2006b) Levels of retinyl palmitate and retinol in stratum corneum, epidermis and dermis of SKH-1 mice. Toxicol. Ind. Health 22, 103-112. https://doi.org/10.1191/0748233706th252oa
  38. Zhou, M., Guan, W., Walker, L.D., Mezencev, R., Benigno, B. B., Gray, A., Fernandez, F. M. and McDonald, J. F. (2010) Rapid mass spectrometric metabolic profiling of blood sera detects ovarian cancer with high accuracy. Cancer Epidemiol. Biomarkers Prev. 19, 2262-2271. https://doi.org/10.1158/1055-9965.EPI-10-0126

Cited by

  1. Rapid fingerprinting of sterols and related compounds in vegetable and animal oils and phytosterol enriched- margarines by transmission mode direct analysis in real time mass spectrometry vol.211, 2016, https://doi.org/10.1016/j.foodchem.2016.05.057
  2. Ambient ionization MS for bioanalysis: recent developments and challenges vol.7, pp.15, 2015, https://doi.org/10.4155/bio.15.116
  3. DART mass spectrometry for rapid screening and quantitative determination of cholesterol in egg pasta vol.49, pp.9, 2014, https://doi.org/10.1002/jms.3465
  4. Plasma-based ambient ionization mass spectrometry in bioanalytical sciences vol.35, pp.1, 2016, https://doi.org/10.1002/mas.21460
  5. Galangin (3,5,7-Trihydroxyflavone) Shields Human Keratinocytes from Ultraviolet B-Induced Oxidative Stress vol.23, pp.2, 2015, https://doi.org/10.4062/biomolther.2014.130
  6. Rapid detection of bacterial endotoxins in ophthalmic viscosurgical device materials by direct analysis in real time mass spectrometry vol.943, 2016, https://doi.org/10.1016/j.aca.2016.09.030
  7. The Polyphenol Chlorogenic Acid Attenuates UVB-mediated Oxidative Stress in Human HaCaT Keratinocytes vol.22, pp.2, 2014, https://doi.org/10.4062/biomolther.2014.006
  8. Current state of the art of mass spectrometry-based metabolomics studies – a review focusing on wide coverage, high throughput and easy identification vol.5, pp.96, 2015, https://doi.org/10.1039/C5RA14058G
  9. Rosmarinic Acid Attenuates Cell Damage against UVB Radiation-Induced Oxidative Stress via Enhancing Antioxidant Effects in Human HaCaT Cells vol.24, pp.1, 2016, https://doi.org/10.4062/biomolther.2015.069
  10. Current and Future Perspectives on the Structural Identification of Small Molecules in Biological Systems vol.6, pp.4, 2016, https://doi.org/10.3390/metabo6040046
  11. Rapid Analysis of Ingredients in Cream Using Ultrasonic Mist–Direct Analysis in Real-Time Time-of-Flight Mass Spectrometry 2017, https://doi.org/10.1007/s13361-017-1746-4
  12. Lablab purpureus Protects HaCaT Cells from Oxidative Stress-Induced Cell Death through Nrf2-Mediated Heme Oxygenase-1 Expression via the Activation of p38 and ERK1/2 vol.21, pp.22, 2013, https://doi.org/10.3390/ijms21228583
  13. High-throughput and trace analysis of diazepam in plasma using DART-MS/MS and its pharmacokinetic application vol.635, pp.None, 2013, https://doi.org/10.1016/j.ab.2021.114435
  14. Metabolomics study of fibroblasts damaged by UVB and BaP vol.11, pp.1, 2013, https://doi.org/10.1038/s41598-021-90186-7