DOI QR코드

DOI QR Code

부유 성장식 생물학적 폐수처리에 미치는 구리의 영향

Effect of Copper on the Suspended Growth Biological Wastewater Treatment

  • 서정범 (안양대학교 환경에너지공학과) ;
  • 황창민 (안양대학교 환경에너지공학과)
  • Seo, Jeong-Beom (Department of Environmental & Energy Engineering, Anyang University) ;
  • Hwang, Chang-Min (Department of Environmental & Energy Engineering, Anyang University)
  • 투고 : 2013.03.25
  • 심사 : 2013.05.01
  • 발행 : 2013.07.30

초록

본 연구에서는 회분식 실험 및 $A_2/O$ 공법의 연속식 실험으로 구리가 생분해, 산소소모율 및 질산화에 미치는 영향을 검토하였다. 본 연구의 결과를 요약하면 다음과 같다. 구리 영향 실험 결과 유기물 분해는 회분식 실험의 경우 구리 농도 4.5 mg/L 이상, 연속식은 구리 농도 2.0 mg/L 이상일 때 영향을 미쳤다. 질산화 및 질소 제거의 경우 회분식은 구리 농도 4.5 mg/L 이상에서 질산화에 영향을 미쳤으며, 연속식의 경우 구리 농도 1 mg/L 이상일 때 질소 제거에 영향을 미쳤다. 인 제거의 경우 회분식은 구리 농도 4.5 mg/L, 연속식은 구리 농도 2 mg/L 이상일 때 영향을 미치는 것으로 나타났다. 산소소모율의 경우 회분식과 연속식 모두 구리 농도 1.5 mg/L 이상일 경우 미생물 활성에 나쁜 영향을 주어 산소소모율이 낮아졌다.

This study was performed to examine the effect of copper on the biodegradability, nitrification, denitrification and oxygen uptake rate (OUR) using batch reactor and continuous flow stirred tank reactor (CSTR) of anaerobic/anoxic/oxic ($A_2/O$). The results of this study can be summarized as follows. In the case of the effect of copper on organic treatment, the bad effect initiated when it was above 4.5 mg/L copper with batch reactor and above 2.0 mg/L copper with CSTR. Concerning the case on nitrification and removal of nitrogen, it showed bad effect when copper was above 4.5 mg/L with batch reactor for nitrification and 1.0 mg/L with CSTR for the removal of nitrogen. The bad effect on the removal of phosphorus began when it was 4.5 mg/L copper with batch reactor and 2 mg/L copper with CSTR. In the case of OUR, it decreased as microbial activity was affected when copper concentration was above 1.5 mg/L in both case of batch reactor and CSTR.

키워드

참고문헌

  1. Lester, J. N., Heavy Metals in Wastewater and Sludge Treatment Processes, In: Vol. II, Treatment and Disposal, CRC Press, Florida, USA.(1987).
  2. Lee, Y. W., Ong, S. K. and Sato, C., "Effects of heavy metal on nitrifying bacteria," Water Sci. Technol., 36, 69-74(1997)
  3. Painter, H. A., "A review of literature on inorganic nitrogen metabolism in microorganisms," Water Res., 4, 393-450(1970). https://doi.org/10.1016/0043-1354(70)90051-5
  4. 櫻井敏郞 外, 活性汚泥法と維持管理, 産業用水調査會, (1980).
  5. Zhou, X. H., Yu, T., Shi, H. C. and Shi, H. M., "Temporal and spatial inhibitory effects of zinc and copper on wastewater biofilms from oxygen concentration profiles determined by microelectrodes," Water Res., 45, 953-959(2011). https://doi.org/10.1016/j.watres.2010.09.035
  6. Adams, C. E. and Eckenfelder. W. W., "Nitrification design approach for high strength ammonia wastewaters," J. Water Pollut. Control Fed., 49, 413-420(1977).
  7. Water Pollution Control Federation, Waste Water Treatment Plant Design, Manual of Practice, No. 8(1977).
  8. Arvin, E. and Kristensen, G. H., "Exchange of organics, phosphate and cation between sludge and water in biological phosphorus and nitrogen removal processes," Water Sci. Technol., 17, 147-162(1985)
  9. Loveless, J. E. and Painter, H. A., "The influence of metal ion concentration and pH values on the growth of a nitrosomonas strain isolated from activated sludge," J. Gen. Microbiol., 52, 1-14(1968) https://doi.org/10.1099/00221287-52-1-1
  10. APHA-AWWA-WEF, Standard Methods 19th ed., American Public Health Association(1995).
  11. Korean department of Environment, Standard Methods of Water Quality(2001).

피인용 문헌

  1. Effect of Zinc on the Suspended Growth Biological Wastewater Treatment vol.37, pp.4, 2015, https://doi.org/10.4491/KSEE.2015.37.4.228
  2. Study on characteristics of specific hazardous substances in the industrial wastewater effluent vol.29, pp.3, 2016, https://doi.org/10.5806/AST.2016.29.3.114