DOI QR코드

DOI QR Code

Effect of different pattern size and pattern shape on castability of commercially pure titanium

납형의 크기와 형태가 티타늄의 주조성에 미치는 영향

  • Seo, Yoon-Jeong (Department of Prosthodontics, Dental Science Research Institute, School of Dentistry, Chonnam National University) ;
  • Oh, Gye-Jeong (RIS Foundation for Advanced Biomaterials, Dental Science Research Institute, School of Dentistry, Chonnam National University) ;
  • Lee, Hyo-Il (Department of Prosthodontics, Dental Science Research Institute, School of Dentistry, Chonnam National University) ;
  • Shin, Yoo-Jin (Department of Prosthodontics, Dental Science Research Institute, School of Dentistry, Chonnam National University) ;
  • Kim, Hong-Joo (Prosthodontic Clinic, Daejeon Sun Dental Hospital) ;
  • Park, Sang-Won (Department of Prosthodontics, Dental Science Research Institute, School of Dentistry, Chonnam National University)
  • 서윤정 (전남대학교 치의학전문대학원 보철학교실) ;
  • 오계정 (전남대학교 미래형생체부품소재 RIS사업단) ;
  • 이효일 (전남대학교 치의학전문대학원 보철학교실) ;
  • 신유진 (전남대학교 치의학전문대학원 보철학교실) ;
  • 김홍주 (대전 선치과병원 보철센터) ;
  • 박상원 (전남대학교 치의학전문대학원 보철학교실)
  • Received : 2013.08.08
  • Accepted : 2013.09.16
  • Published : 2013.10.31

Abstract

Purpose: The purpose of this study was to investigate the effect of geometrically different wax pattern shapes and sizes on the castability of Grade2 Cp-Ti (commercially pure titanium). Materials and methods: Total of 40 mesh wax pattern ($61mm{\times}24mm$, 207 grids), ($61mm{\times}17mm$, 138 grids) was cast in this experiment. Depending on the geometrical shape of the wax pattern, 8 groups was organized; Flat, Semicircular, Horse-shoe and V-shape, each consisting 5 samples. Runner-bar sprue was used in all patterns. The number of completely cast grid in wax pattern served as a measure for the castability of comercially pure titanium. Results: The mean value of square count in each group was as followed; 133.20 squares in group SS (96.52%), 132.40 squares in group SH (95.94%), 132.00 squares in group SF (95.65%), 127.60 squares in SV (91.43%), 198.60 squares in group LF (95.94%), 197.80 squares in group LV (95.56%), 196.40 squares in group LS (94.88%), and 188.00 squares in group LH (90.82%). Conclusion: Within the limitations of this study the results indicate that there were no sttistically significant difference in castability of titanium regarding wax pattern shape (P>.05). However, Small size wax patterns were showing the noticeable castability more than Large size pattern.

연구 목적: 본 연구는 납형의 크기 및 형태 변화가 티타늄의 주조성에 어떠한 영향을 미치는지 확인하고자 하였다. 연구 재료 및 방법: 납형의 크기에 따라 Small Pattern군과 Large Pattern군으로 나누었고, 각각 Flat, Semicircular, Horse-shoe 및 V-shape형으로 납형의 형태에 따라 4개의 하위군으로 나누어 총 8개의 군으로 분류하였다. 모든 납형의 주입선은 Runner-bar형으로 하였다. 티타늄 주조 전용 매몰재인 실리카계 매몰재(Rematitan Plus$^{(R)}$, Dentarum, Germany)를 이용하여 매몰하였고, 아크용융 방식의 원심 주조기(Ti Cast Super R$^{(R)}$, Selec, Japan)를 사용하여 주조하였다. 주조성 평가는 완전한 형태로 주조 된 격자의 개수를 척도로 재현 정도를 확인하였다. 통계처리는 SPSS ver. 19.0 for WIN (SPSS. Inc. Chicago, IL, USA)를 사용하였다. 납형의 크기 및 형태에 따른 티타늄의 주조성을 이원변량 분산분석(Two-way ANOVA)을 이용하여 분석하였다. 결과:납형의 평균 재현율은 Small Pattern군은 95.14%, Large Pattern군은 94.30%로 Small Pattern군의 주조성이 유의하게 높았다(P<.05). 납형의 형태 변화에 따른 주조성은 Small Pattern군에서 Semicircular군 133.20개(96.52%), Horse-shoe군 132.40개(95.94%), Flat군 132.00개(95.65%), V-shape군 127.60개(92.46%) 순으로 감소하였다. Large Pattern군은 Flat군 198.60개(95.94%), V-shape군 197.80개(95.56%), Semicircular군 196.40개(94.88%), Horse-shoe군 188.00개(90.82%)순으로 감소하였다. Small Pattern군과 Large Pattern군 모두에서 납형의 형태변화에 따른 주조성은 유의할 만한 차이를 보이지 않았다(P>.05). 결론:주조체의 크기가 작을수록 주조성이 높아짐을 알 수 있었고 형태에 따른 주조성에서는 큰 영향을 받지 않는 것을 알 수 있었다.

Keywords

References

  1. Hansson HA, Albrektsson T, Branemark PI. Structural aspects of the interface between tissue and titanium implants. J Prosthet Dent 1983;50:108-13. https://doi.org/10.1016/0022-3913(83)90175-0
  2. Parr GR, Gardner LK, Toth RW. Titanium: the mystery metal of implant dentistry. Dental materials aspects. J Prosthet Dent 1985;54:410-4. https://doi.org/10.1016/0022-3913(85)90562-1
  3. Albrektsson T, Zarb G, Worthington P, Eriksson AR. The longterm efficacy of currently used dental implants: a review and proposed criteria of success. Int J Oral Maxillofac Implants 1986; 1:11-25.
  4. Bessing C, Bergman M. The castability of unalloyed titanium in three different casting machines. Swed Dent J 1992;16:109-13.
  5. Mori T, Jean-Louis M, Yabugami M, Togaya T. The effect of investment type on the fit of cast titanium crowns. Aust Dent J 1994;39:348-52. https://doi.org/10.1111/j.1834-7819.1994.tb03104.x
  6. Okabe T, Hero H. The use of titanium in dentistry. Cell Mater 1995;87:211-30.
  7. Cho LR, Yi YJ, Park CJ. The effects of spure and invents on the casting accuracy and porosity of Ti-Ni castings. J Korean Acad Prosthodont 2003;41:342-50.
  8. Park JK, Jeong CM, Jeon YC. The effect of sprue design on the marginal reproducibility of cast titanium crowns. J Korean Acad Prosthodont 2002;40:344-51.
  9. Kim ST, Vang MS, Yang HS, Park SW, Park HO, Lim HP. The effect of casting machine and investment on the castability of titanium. J Korean Acad Prosthodont 2007;45:522-33.
  10. Burnett CA, Maguire H. Sprue design in removable partial denture casting. J Dent 1996;24:99-103. https://doi.org/10.1016/0300-5712(95)00050-X
  11. Chai TI, Stein RS. Porosity and accuracy of multiple-unit titanium castings. J Prosthet Dent 1995;73:534-41. https://doi.org/10.1016/S0022-3913(05)80112-X
  12. Chan D, Guillory V, Blackman R, Chung KH. The effects of sprue design on the roughness and porosity of titanium castings. J Prosthet Dent 1997;78:400-4. https://doi.org/10.1016/S0022-3913(97)70048-9
  13. Takahashi J, Zhang JZ, Okazaki M. Effect of casting methods on castability of pure titanium. Dent Mater J 1993;12:245-52. https://doi.org/10.4012/dmj.12.245
  14. Kusakari H, Ozaki Y, Hoshino H. Cast titanium crown-for a better fitness and less porosity [in Janpanes]. Quintessence. Dent Technol 1998;23:17-23.
  15. DeWald E. The relationship of pattern position to the flow of gold and casting completeness. J Prosthet Dent 1979;41:531-4. https://doi.org/10.1016/0022-3913(79)90087-8
  16. Blackman R, Barghi N, Tran C. Dimensional changes in casting titanium removable partial denture frameworks. J Prosthet Dent 1991;65:309-15. https://doi.org/10.1016/0022-3913(91)90181-U
  17. Bridgeman JT, Marker VA, Hummel SK, Benson BW, Pace LL. Comparison of titanium and cobalt-chromium removable partial denture clasps. J Prosthet Dent 1997;78:187-93. https://doi.org/10.1016/S0022-3913(97)70124-0
  18. Watanabe K, Okawa S, Miyakawa O, Nakano S, Honma H, Shiokawa N, Kobayashi M. Relationship between titanium flow and casting contamination caused by mold materials. J Dent Mater 1992;11:662-71.
  19. Watanabe I, Woldu M, Watanabe K, Okabe T. Effect of casting method on castability of titanium and dental alloys. J Mater Sci Mater Med 2000;11:547-53. https://doi.org/10.1023/A:1008972018025
  20. Baltag I, Watanabe K, Miyakawa O. Internal porosity of cast titanium removable partial dentures: influence of sprue direction and diameter on porosity in simplified circumferential clasps. Dent Mater 2005;21:530-7. https://doi.org/10.1016/j.dental.2004.07.017
  21. Her H, Syverud M, Waarli M. Mold filling and porosity in castings of titanium. Dent Mater 1993;9:15-8. https://doi.org/10.1016/0109-5641(93)90098-B
  22. Syverud M, Her H. Mold filling of Ti castings using investments with different gas permeability. Dent Mater 1995;11:14-8. https://doi.org/10.1016/0109-5641(95)80003-4
  23. Heo SM, Jeon YC, Jeong CM, Lim JS, Jeong HC. The effect of sprue design on the internal porosity of titanium castings. J Korean Acad Prosthodont 2006;44:147-56.
  24. Love LD. Sprue design to minimize casting defects in base-metal castings. Quintessence Dent Technol 1987;11:195-7.
  25. Matin KA, Manderson RD. The influence of sprue design on cobalt chromium alloy casting defects. J Dent 1984;12:175-82. https://doi.org/10.1016/0300-5712(84)90052-6
  26. Wu M, Wagner I, Sahm PR, Augthun M. Numerical simulation of the casting process of titanium removable partial denture frameworks. J Mater Sci Mater Med 2002;13:301-6. https://doi.org/10.1023/A:1014067019169
  27. Wu M, Augthun M, Wagner I, Sahm PR, Spiekermann H. Numerical simulation of the casting process of titanium tooth crowns and bridges. J Mater Sci Mater Med 2001;12:485-90. https://doi.org/10.1023/A:1011207326961
  28. Watanabe K. Merit and demerit of runner bar for crown-bridge titanium casting-sink vortex causes internal defects [in Japanese]. Quintessence Dent Technol 1999;24:19-25.
  29. Chan DC, Blackman R, Kaiser DA, Chung K. The effect of sprue design on the marginal accuracy of titanium castings. J Oral Rehabil 1998;25:424-9. https://doi.org/10.1046/j.1365-2842.1998.00268.x
  30. Ryge G, Kozak SF, Fairhurst CW. Porosities in dental gold castings. J Am Dent Assoc 1957;54:746-54. https://doi.org/10.14219/jada.archive.1957.0125
  31. Blackman R, Barghi N, Tran C. Dimensional changes in casting titanium removable partial denture frameworks. J Prosthet Dent 1991;65:309-15. https://doi.org/10.1016/0022-3913(91)90181-U
  32. Andersson M, Bergman B, Bessing C, Ericson G, Lundquist P, Nilson H. Clinical results with titanium crowns fabricated with machine duplication and spark erosion. Acta Odontol Scand 1989;47:279-86. https://doi.org/10.3109/00016358909007713
  33. Hruska AR, Borelli P. Quality criteria for pure titanium casting, laboratory soldering, intraoral welding, and a device to aid in making uncontaminated castings. J Prosthet Dent 1991;66:561-5. https://doi.org/10.1016/0022-3913(91)90524-Z
  34. Syverud M, Okabe T, Hero H. Casting of Ti-6Al-4V alloy compared with pure Ti in an Ar-arc casting machine. Eur J Oral Sci 1995;103:327-30. https://doi.org/10.1111/j.1600-0722.1995.tb00034.x
  35. Watanabe K, Okawa S, Miyakawa O, Nakano S, Shiokawa N, Kobayashi M. Molten titanium flow in a mesh cavity by the flow visualization technique. Dent Mater J 1991;10:128-37. https://doi.org/10.4012/dmj.10.128
  36. Chung DW, Yang HS. The effect of casting machine and investment on the castability of titanium alloy. J Korean Acad Prosthodont 2006;44:654-64.
  37. al-Mesmar HS, Morgano SM, Mark LE. Investigation of the effect of three sprue designs on the porosity and the completeness of titanium cast removable partial denture frameworks. J Prosthet Dent 1999;82:15-21. https://doi.org/10.1016/S0022-3913(99)70126-5
  38. Compagni R, Faucher RR, Yuodelis RA. Effects of sprue design, casting machine, and heat source on casting porosity. J Prosthet Dent 1984;52:41-5. https://doi.org/10.1016/0022-3913(84)90179-3
  39. Vidovic Y, Chung HG, Mori T. Enhancement of a titanium denture frame model: mold temperature and spruing factors. Dent Mater J 1995;14:256-62. https://doi.org/10.4012/dmj.14.256
  40. Preston JD, Berger R. Some laboratory variables affecting ceramo-metal alloys. Dent Clin North Am 1977;21:717-28.