DOI QR코드

DOI QR Code

Experimental Study on the Bond Properties between GFRP Reinforcements and Steel Fiber Reinforced Concrete

강섬유 보강 콘크리트와 GFRP 보강근의 부착특성에 관한 실험적 연구

  • Choi, Yun-Cheul (Dept. of Architectural Environmental Engineering and Building Service, ChungWoon University)
  • 최윤철 (청운대학교 건축설비소방학과)
  • Received : 2013.08.08
  • Accepted : 2013.08.31
  • Published : 2013.10.31

Abstract

In this paper, an experimental investigation of bond properties between steel fiber reinforced concrete and glass fiber reinforced polymer reinforcements was performed. The experimental variables were diameter of reinforcements, volume fraction of steel fiber, cover thickness and compressive strength of concrete. Bond failure mainly occurred with splitting of concrete cover. Main factor for splitting of concrete is tension force occurred by the displacement difference between reinforcements and concrete. Therefore, in order to prevent the bond failure between reinforcements and concrete, capacity of tensile strength of concrete cover should be upgraded. As a results of test, volume fraction of steel fiber significantly increases the bond strength. Cover thickness changes the failure mode. Diameter of reinforcements also changes the failure mode. Generally, diameter of reinforcement also affects the bond properties but this effect is not significant as volume fraction of fiber. Increase of compressive strength increases the bond strength between concrete and reinforcement because compressive strength of concrete directly affects the tensile strength of concrete.

이 논문은 강섬유보강콘크리트와 GFRP (glass fiber reinforced polymer)사이의 부착 특성을 조사하기 위한 실험적 연구를 수행하였다. 실험 주요 변수로는 보강근 지름, 섬유혼입량, 피복두께 및 콘크리트의 압축강도를 설정하였다. 부착파괴는 주로 콘크리트 피복에서의 쪼갬으로 인하여 유발되며, 이러한 콘크리트의 쪼갬파괴는 보강근과 콘크리트 사이의 변형 차이로 유발되는 인장력때문에 발생한다. 따라서, 보강근과 콘크리트 사이의 부착파괴를 방지하기 위하여, 콘크리트 피복부위의 인장강도를 향상시켜야 한다. 실험결과를 살펴보면, 섬유혼입량 증가는 부착강도를 크게 향상시키고 있으며, 피복두께는 최종 파괴모드를 변화시킴을 확인할 수 있었다. 보강근의 지름 또한 최종 파괴모드를 변화시킴을 확인할 수 있었다. 일반적으로 보강근의 지름은 부착특성에 영향을 미치는 것으로 알려져 있으나, 섬유혼입량은 부착특성에 큰 영향이 없는 것으로 알려져 있다. 콘크리트 압축강도의 증가는 보강근과 콘크리트 사이의 부착강도를 증가시켰으며, 이는 압축강도의 증가가 직접적으로 인장강도의 증가를 유발하기 때문이라고 판단된다.

Keywords

References

  1. Benmokrane, B., Chaallal, O., and Masmoudi, R., "lexural Response of Concrete Beams Reinforced with FRP Reinforcing Bars," ACI Structural Journal, Vol. 93, No. 1, 1996, pp. 46-55.
  2. American Concrete Institute, "Guide for the Design and Construction of Concrete Reinforced with FRP Bars," ACI 440.1R-01, 2001, pp. 440.1R-16-17.
  3. Ha, S. S. and Yoon, J. S., "Comparison of Development Length Equation of Bottom and Top GFRP Bars with Splitting Failure," Journal of KIC, Vol. 9, No. 6, 2009, pp. 141-149. https://doi.org/10.5345/JKIC.2009.9.6.141
  4. Park, C. G., Won, J. P., and Kang, J. W., "Recommendations of Environmental Reduction Factor of FRP Rebar for Durability Design of Concrete Structure," Journal of the Korea Concrete Institute, Vol. 16, No. 4, 2004, pp. 529-539. https://doi.org/10.4334/JKCI.2004.16.4.529
  5. Li, V. C., "Engineered Cememntitious Composites (ECC)- Tailored Composites Through Micromechanical Modeling," Fiber Reinforced Concrete: Present and the Future, Canadian Society for Civil Engineering, pp. 64-97.
  6. ACI Report 440H, Guide for the Design and Construction of Concrete Reinforced with FRP Bars, American Concrete Institute Committee 440, 2000, pp. 10-30.
  7. Won, J. P, Park, C. G, Kim, H. H., Lee, S. W., and Won, C., "Bond Behavior of FRP Reinforcing Bars in High-Strength Steel Fibre-Reinforced Concrete," Polymers & Polymer Composites, Vol. 15, No. 7, 2007, pp. 569-578.
  8. Park, J. S., Yoo, Y. J., Park, Y. H., and Kim, G. W., "An Experimental Study on the Bond Characteristics of GFRP Rebars with Bond Length," Proceeding of KSCE, Vol. 10, No. 10, 2007, pp. 2326-2329.
  9. Korean Angency for Technology and Standard, Test Method for Comparing Concrete on the Basis of the Bond Developed with Reinforcing Steel (KS F2441), 2010, pp. 1-12.
  10. Soroushian, P., Mirza, F., and Alhozaimy, A., "Bonding of Confined Steel Fiber Reinforced Concrete to Deformed Bar," ACI Material Journal, Vol. 91, No. 2, 1994, pp. 141-148.
  11. CEB-FIP, fib Model Code 2010, First Complete Draft Volume 1, fib Bulletins 55, 2010, 318 pp.